How do Boyle’s law and Charles’s law differ ?
Answer
Verified
439.8k+ views
Hint: -In Charles law, temperature and volume of the gas are kept at steady pressure factor. While in Boyle's law, pressure factor and volume of the gas are kept at a steady temperature.
In Boyle's law, pressure factor and volume shift conversely while, in Charles law, pressure factor and volume differ straightforwardly.
Complete step by step answer:
Comparison 1:
Boyle's Law is a backwards connection among pressure factor and volume. The kinetic energy of issue is essential to Boyle's Law. As the volume diminishes the atoms impact all the more much of the time making more pressure factor. At the point when the volume and the quantity of atoms stay steady.
$0.50$ Charles Law is an immediate connection among temperature and volume. At the point when the temperature of the particles builds the atoms move quicker making more tension on the holder of the gas expanding the volume, if the pressure factor stays steady and the quantity of the particles stays consistent. The pressure factor stays as before on the grounds that volume increment remembers the pressure factor.
Comparison 2:
In Boyle's law volume and pressure contrast inversely, while in Charles' law, volume and pressure contrast directly.
Consider an example, if the pressure in Boyle's law is doubled from \[1.0\] atmospheres to $2.0$ atmospheres with an unique volume of $1.0$, the new volume will be $0.50$.
This is in agreement with Boyle's law which states that the product of the first pressure and volume is equal to the product of the final pressure and volume.
\[{P_1}{V_1}\; = \;{P_2}{V_2}\]
Currently compare this to Charle’s law which states that the product of the first volume and the final temperature is equal to the product of the final volume and first temperature.
\[{V_1}{T_2} = \;{V_1}{T_1}\]
Recall that all temperatures must be considered in kelvin.
If the first temperature of \[273{\text{ }}K\] is doubled to \[546{\text{ }}K\], then a first volume of \[1.0\] liter is also doubled, with a final volume of \[2.0\] liters.
Boyle's Law is a reverse connection among pressure factor and volume
Charles Law is an immediate relationship. among temperature and volume.
Note:
The distinctions are that Boyle's Law is an immediate relationship while Charles Law is a backwards relationship. The two laws include volume however one includes pressure and the other temperature.
In Boyle's law, pressure factor and volume shift conversely while, in Charles law, pressure factor and volume differ straightforwardly.
Complete step by step answer:
Comparison 1:
Boyle's Law is a backwards connection among pressure factor and volume. The kinetic energy of issue is essential to Boyle's Law. As the volume diminishes the atoms impact all the more much of the time making more pressure factor. At the point when the volume and the quantity of atoms stay steady.
$0.50$ Charles Law is an immediate connection among temperature and volume. At the point when the temperature of the particles builds the atoms move quicker making more tension on the holder of the gas expanding the volume, if the pressure factor stays steady and the quantity of the particles stays consistent. The pressure factor stays as before on the grounds that volume increment remembers the pressure factor.
Comparison 2:
In Boyle's law volume and pressure contrast inversely, while in Charles' law, volume and pressure contrast directly.
Consider an example, if the pressure in Boyle's law is doubled from \[1.0\] atmospheres to $2.0$ atmospheres with an unique volume of $1.0$, the new volume will be $0.50$.
This is in agreement with Boyle's law which states that the product of the first pressure and volume is equal to the product of the final pressure and volume.
\[{P_1}{V_1}\; = \;{P_2}{V_2}\]
Currently compare this to Charle’s law which states that the product of the first volume and the final temperature is equal to the product of the final volume and first temperature.
\[{V_1}{T_2} = \;{V_1}{T_1}\]
Recall that all temperatures must be considered in kelvin.
If the first temperature of \[273{\text{ }}K\] is doubled to \[546{\text{ }}K\], then a first volume of \[1.0\] liter is also doubled, with a final volume of \[2.0\] liters.
Boyle's Law is a reverse connection among pressure factor and volume
Charles Law is an immediate relationship. among temperature and volume.
Note:
The distinctions are that Boyle's Law is an immediate relationship while Charles Law is a backwards relationship. The two laws include volume however one includes pressure and the other temperature.
Recently Updated Pages
Using the following information to help you answer class 12 chemistry CBSE
Basicity of sulphurous acid and sulphuric acid are
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Draw a labelled sketch of the human eye class 12 physics CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?