
Boiling point of water on the Fahrenheit scale is
$\begin{align}
& A.\text{ }100{}^\circ F \\
& B.\text{ }112{}^\circ F \\
& C.\text{ }212{}^\circ F \\
& D.\text{ }32{}^\circ F \\
\end{align}$
Answer
513.9k+ views
Hint: In order to convert one temperature scale to another
We use
$\dfrac{\operatorname{Re}ading-freezing\text{ }po\operatorname{int}}{Boiling\text{ point-freezing point}}=constant $
Complete step-by-step answer:
As temperature is linearly varies to height of mercury level
Now it is given from question
For Celsius scale
Freezing point$={{0}^{0}}\text{ C}$
Boiling point $={{100}^{0}}C $
For Fahrenheit scale
Freezing point$={{32}^{0}}\text{ F}$
Boiling point $={{212}^{0}}F$
Let us assume boiling point on Fahrenheit scale is x0 F,
So using the relation
$\dfrac{\operatorname{Re}ading-freezing\text{ }po\operatorname{int}}{Boiling\text{ point-freezing point}}=constant$
So we can write
$\begin{align}
& \dfrac{x{}^\circ F-32{}^\circ F}{212{}^\circ F-32{}^\circ F}=\dfrac{100{}^\circ C-0{}^\circ C}{100{}^\circ C-0{}^\circ C} \\
& \Rightarrow \dfrac{x{}^\circ F-32{}^\circ F}{180{}^\circ F}=\dfrac{100{}^\circ C}{100{}^\circ C} \\
& \Rightarrow \dfrac{x{}^\circ F-32{}^\circ F}{180{}^\circ F}=1 \\
& \Rightarrow x{}^\circ F-32{}^\circ F=180{}^\circ F \\
& transposing\text{ 32}{}^\circ \text{F on right hand side} \\
& \Rightarrow x=180{}^\circ F+32{}^\circ F \\
& \Rightarrow x=212{}^\circ F \\
& \\
\end{align}$
Hence boiling point on Fahrenheit scale is ${{212}^{0}}F$ , so option C is correct.
Note: During calculation it must be written steps in proper units , also expansion of mercury level is a linear function of temperature. We can also use the relation $F=32+\dfrac{9}{5}C$ to change directly celsius reading to Fahrenheit reading.
We use
$\dfrac{\operatorname{Re}ading-freezing\text{ }po\operatorname{int}}{Boiling\text{ point-freezing point}}=constant $
Complete step-by-step answer:
As temperature is linearly varies to height of mercury level
Now it is given from question
For Celsius scale
Freezing point$={{0}^{0}}\text{ C}$
Boiling point $={{100}^{0}}C $
For Fahrenheit scale
Freezing point$={{32}^{0}}\text{ F}$
Boiling point $={{212}^{0}}F$
Let us assume boiling point on Fahrenheit scale is x0 F,
So using the relation
$\dfrac{\operatorname{Re}ading-freezing\text{ }po\operatorname{int}}{Boiling\text{ point-freezing point}}=constant$
So we can write
$\begin{align}
& \dfrac{x{}^\circ F-32{}^\circ F}{212{}^\circ F-32{}^\circ F}=\dfrac{100{}^\circ C-0{}^\circ C}{100{}^\circ C-0{}^\circ C} \\
& \Rightarrow \dfrac{x{}^\circ F-32{}^\circ F}{180{}^\circ F}=\dfrac{100{}^\circ C}{100{}^\circ C} \\
& \Rightarrow \dfrac{x{}^\circ F-32{}^\circ F}{180{}^\circ F}=1 \\
& \Rightarrow x{}^\circ F-32{}^\circ F=180{}^\circ F \\
& transposing\text{ 32}{}^\circ \text{F on right hand side} \\
& \Rightarrow x=180{}^\circ F+32{}^\circ F \\
& \Rightarrow x=212{}^\circ F \\
& \\
\end{align}$
Hence boiling point on Fahrenheit scale is ${{212}^{0}}F$ , so option C is correct.
Note: During calculation it must be written steps in proper units , also expansion of mercury level is a linear function of temperature. We can also use the relation $F=32+\dfrac{9}{5}C$ to change directly celsius reading to Fahrenheit reading.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

A piece of wire 20 cm long is bent into the form of class 9 maths CBSE

Difference Between Plant Cell and Animal Cell

What is the difference between Atleast and Atmost in class 9 maths CBSE
