
BL and BM are the medians of a right-angled triangle ABC, right-angled at A. Prove that $4\left( \text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}} \right)=5\text{B}{{\text{C}}^{2}}$
Answer
601.5k+ views
Hint: Use Pythagoras theorem in triangles AMC, ALB and ABC. Add the first two equations formed and using the third equation, simplify the expression and hence prove the result.
Complete step-by-step answer:
Pythagoras theorem: In a right-angled triangle the square of the length of the hypotenuse equals the sum of the squares of the lengths of the other two sides.
In triangle AMC by Pythagoras theorem, we have
$\text{A}{{\text{M}}^{2}}+\text{A}{{\text{C}}^{2}}=\text{C}{{\text{M}}^{2}}\text{ (i)}$
Similarly in triangle ALB by Pythagoras theorem, we have
$\text{A}{{\text{L}}^{2}}+\text{A}{{\text{B}}^{2}}=\text{B}{{\text{L}}^{2}}\text{ (ii)}$
In triangle ABC, by Pythagoras theorem, we have
$\text{A}{{\text{B}}^{2}}+\text{A}{{\text{C}}^{2}}=\text{B}{{\text{C}}^{2}}\text{ (iii)}$
Adding equation (i) and equation (ii), we get
$\text{A}{{\text{M}}^{2}}+\text{A}{{\text{C}}^{2}}+\text{A}{{\text{L}}^{2}}+\text{A}{{\text{B}}^{2}}=\text{C}{{\text{M}}^{2}}+\text{B}{{\text{L}}^{2}}$
Since M is the midpoint of AB and L is the midpoint of AC, we have
$\text{AM=}\dfrac{\text{AB}}{2}$ and $\text{AL=}\dfrac{\text{AC}}{2}$
Hence, we have
$\begin{align}
& {{\left( \dfrac{\text{AB}}{2} \right)}^{2}}+{{\left( \dfrac{\text{AC}}{2} \right)}^{2}}+\text{A}{{\text{B}}^{2}}\text{+A}{{\text{C}}^{2}}=\text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}} \\
& \Rightarrow \dfrac{\text{A}{{\text{B}}^{2}}}{4}+\dfrac{\text{A}{{\text{C}}^{2}}}{4}+\text{A}{{\text{B}}^{2}}\text{+A}{{\text{C}}^{2}}=\text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}} \\
& \Rightarrow \dfrac{5}{4}\left( \text{A}{{\text{B}}^{2}}\text{+A}{{\text{C}}^{2}} \right)=\text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}} \\
\end{align}$
Multiplying both sides by 4, we get
$5\left( \text{A}{{\text{B}}^{2}}\text{+A}{{\text{C}}^{2}} \right)=4\left( \text{B}{{\text{L}}^{2}}\text{+C}{{\text{M}}^{2}} \right)$
Now, from equation (iii), we have
$5\left( \text{B}{{\text{C}}^{2}} \right)=4\left( \text{B}{{\text{L}}^{2}}\text{+C}{{\text{M}}^{2}} \right)$
Hence, we have
$4\left( \text{B}{{\text{L}}^{2}}\text{+C}{{\text{M}}^{2}} \right)=5\text{B}{{\text{C}}^{2}}$
Hence proved.
Note: The above result can also be proved analytically i.e. using coordinate geometry.
Let $\text{A}\equiv \left( 0,0 \right),\text{B}\equiv \left( a,0 \right)$ and $\text{C}\equiv \left( 0,b \right)$be the coordinates of a right-angled triangle right angled at A.
Midpoint theorem: if $\text{A}\equiv \left( {{x}_{1}},{{y}_{1}} \right)$ and $\text{B}\equiv \left( {{x}_{2}},{{y}_{2}} \right)$, then the coordinates of the midpoint C of AB are given by $\text{C}\equiv \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$. We use the midpoint theorem on AC and AB.
Hence we have $\text{L}\equiv \left( 0,\dfrac{b}{2} \right)$ and $\text{M}\equiv \left( \dfrac{a}{2},0 \right)$
Hence $\text{BC=}\sqrt{{{a}^{2}}+{{b}^{2}}},\text{CM=}\sqrt{{{b}^{2}}+\dfrac{{{a}^{2}}}{4}}$ and $\text{BL=}\sqrt{{{a}^{2}}+\dfrac{{{b}^{2}}}{4}}$.
Hence we have
$\text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}}={{a}^{2}}+\dfrac{{{b}^{2}}}{4}+{{b}^{2}}+\dfrac{{{a}^{2}}}{4}=\dfrac{5}{4}\left( {{a}^{2}}+{{b}^{2}} \right)=\dfrac{5}{4}\text{B}{{\text{C}}^{2}}$
Multiplying both sides by 4 yields the result.
Hence proved.
Complete step-by-step answer:
Pythagoras theorem: In a right-angled triangle the square of the length of the hypotenuse equals the sum of the squares of the lengths of the other two sides.
In triangle AMC by Pythagoras theorem, we have
$\text{A}{{\text{M}}^{2}}+\text{A}{{\text{C}}^{2}}=\text{C}{{\text{M}}^{2}}\text{ (i)}$
Similarly in triangle ALB by Pythagoras theorem, we have
$\text{A}{{\text{L}}^{2}}+\text{A}{{\text{B}}^{2}}=\text{B}{{\text{L}}^{2}}\text{ (ii)}$
In triangle ABC, by Pythagoras theorem, we have
$\text{A}{{\text{B}}^{2}}+\text{A}{{\text{C}}^{2}}=\text{B}{{\text{C}}^{2}}\text{ (iii)}$
Adding equation (i) and equation (ii), we get
$\text{A}{{\text{M}}^{2}}+\text{A}{{\text{C}}^{2}}+\text{A}{{\text{L}}^{2}}+\text{A}{{\text{B}}^{2}}=\text{C}{{\text{M}}^{2}}+\text{B}{{\text{L}}^{2}}$
Since M is the midpoint of AB and L is the midpoint of AC, we have
$\text{AM=}\dfrac{\text{AB}}{2}$ and $\text{AL=}\dfrac{\text{AC}}{2}$
Hence, we have
$\begin{align}
& {{\left( \dfrac{\text{AB}}{2} \right)}^{2}}+{{\left( \dfrac{\text{AC}}{2} \right)}^{2}}+\text{A}{{\text{B}}^{2}}\text{+A}{{\text{C}}^{2}}=\text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}} \\
& \Rightarrow \dfrac{\text{A}{{\text{B}}^{2}}}{4}+\dfrac{\text{A}{{\text{C}}^{2}}}{4}+\text{A}{{\text{B}}^{2}}\text{+A}{{\text{C}}^{2}}=\text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}} \\
& \Rightarrow \dfrac{5}{4}\left( \text{A}{{\text{B}}^{2}}\text{+A}{{\text{C}}^{2}} \right)=\text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}} \\
\end{align}$
Multiplying both sides by 4, we get
$5\left( \text{A}{{\text{B}}^{2}}\text{+A}{{\text{C}}^{2}} \right)=4\left( \text{B}{{\text{L}}^{2}}\text{+C}{{\text{M}}^{2}} \right)$
Now, from equation (iii), we have
$5\left( \text{B}{{\text{C}}^{2}} \right)=4\left( \text{B}{{\text{L}}^{2}}\text{+C}{{\text{M}}^{2}} \right)$
Hence, we have
$4\left( \text{B}{{\text{L}}^{2}}\text{+C}{{\text{M}}^{2}} \right)=5\text{B}{{\text{C}}^{2}}$
Hence proved.
Note: The above result can also be proved analytically i.e. using coordinate geometry.
Let $\text{A}\equiv \left( 0,0 \right),\text{B}\equiv \left( a,0 \right)$ and $\text{C}\equiv \left( 0,b \right)$be the coordinates of a right-angled triangle right angled at A.
Midpoint theorem: if $\text{A}\equiv \left( {{x}_{1}},{{y}_{1}} \right)$ and $\text{B}\equiv \left( {{x}_{2}},{{y}_{2}} \right)$, then the coordinates of the midpoint C of AB are given by $\text{C}\equiv \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$. We use the midpoint theorem on AC and AB.
Hence we have $\text{L}\equiv \left( 0,\dfrac{b}{2} \right)$ and $\text{M}\equiv \left( \dfrac{a}{2},0 \right)$
Hence $\text{BC=}\sqrt{{{a}^{2}}+{{b}^{2}}},\text{CM=}\sqrt{{{b}^{2}}+\dfrac{{{a}^{2}}}{4}}$ and $\text{BL=}\sqrt{{{a}^{2}}+\dfrac{{{b}^{2}}}{4}}$.
Hence we have
$\text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}}={{a}^{2}}+\dfrac{{{b}^{2}}}{4}+{{b}^{2}}+\dfrac{{{a}^{2}}}{4}=\dfrac{5}{4}\left( {{a}^{2}}+{{b}^{2}} \right)=\dfrac{5}{4}\text{B}{{\text{C}}^{2}}$
Multiplying both sides by 4 yields the result.
Hence proved.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

