
BL and BM are the medians of a right-angled triangle ABC, right-angled at A. Prove that $4\left( \text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}} \right)=5\text{B}{{\text{C}}^{2}}$
Answer
516.9k+ views
Hint: Use Pythagoras theorem in triangles AMC, ALB and ABC. Add the first two equations formed and using the third equation, simplify the expression and hence prove the result.
Complete step-by-step answer:
Pythagoras theorem: In a right-angled triangle the square of the length of the hypotenuse equals the sum of the squares of the lengths of the other two sides.
In triangle AMC by Pythagoras theorem, we have
$\text{A}{{\text{M}}^{2}}+\text{A}{{\text{C}}^{2}}=\text{C}{{\text{M}}^{2}}\text{ (i)}$
Similarly in triangle ALB by Pythagoras theorem, we have
$\text{A}{{\text{L}}^{2}}+\text{A}{{\text{B}}^{2}}=\text{B}{{\text{L}}^{2}}\text{ (ii)}$
In triangle ABC, by Pythagoras theorem, we have
$\text{A}{{\text{B}}^{2}}+\text{A}{{\text{C}}^{2}}=\text{B}{{\text{C}}^{2}}\text{ (iii)}$
Adding equation (i) and equation (ii), we get
$\text{A}{{\text{M}}^{2}}+\text{A}{{\text{C}}^{2}}+\text{A}{{\text{L}}^{2}}+\text{A}{{\text{B}}^{2}}=\text{C}{{\text{M}}^{2}}+\text{B}{{\text{L}}^{2}}$
Since M is the midpoint of AB and L is the midpoint of AC, we have
$\text{AM=}\dfrac{\text{AB}}{2}$ and $\text{AL=}\dfrac{\text{AC}}{2}$
Hence, we have
$\begin{align}
& {{\left( \dfrac{\text{AB}}{2} \right)}^{2}}+{{\left( \dfrac{\text{AC}}{2} \right)}^{2}}+\text{A}{{\text{B}}^{2}}\text{+A}{{\text{C}}^{2}}=\text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}} \\
& \Rightarrow \dfrac{\text{A}{{\text{B}}^{2}}}{4}+\dfrac{\text{A}{{\text{C}}^{2}}}{4}+\text{A}{{\text{B}}^{2}}\text{+A}{{\text{C}}^{2}}=\text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}} \\
& \Rightarrow \dfrac{5}{4}\left( \text{A}{{\text{B}}^{2}}\text{+A}{{\text{C}}^{2}} \right)=\text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}} \\
\end{align}$
Multiplying both sides by 4, we get
$5\left( \text{A}{{\text{B}}^{2}}\text{+A}{{\text{C}}^{2}} \right)=4\left( \text{B}{{\text{L}}^{2}}\text{+C}{{\text{M}}^{2}} \right)$
Now, from equation (iii), we have
$5\left( \text{B}{{\text{C}}^{2}} \right)=4\left( \text{B}{{\text{L}}^{2}}\text{+C}{{\text{M}}^{2}} \right)$
Hence, we have
$4\left( \text{B}{{\text{L}}^{2}}\text{+C}{{\text{M}}^{2}} \right)=5\text{B}{{\text{C}}^{2}}$
Hence proved.
Note: The above result can also be proved analytically i.e. using coordinate geometry.
Let $\text{A}\equiv \left( 0,0 \right),\text{B}\equiv \left( a,0 \right)$ and $\text{C}\equiv \left( 0,b \right)$be the coordinates of a right-angled triangle right angled at A.
Midpoint theorem: if $\text{A}\equiv \left( {{x}_{1}},{{y}_{1}} \right)$ and $\text{B}\equiv \left( {{x}_{2}},{{y}_{2}} \right)$, then the coordinates of the midpoint C of AB are given by $\text{C}\equiv \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$. We use the midpoint theorem on AC and AB.
Hence we have $\text{L}\equiv \left( 0,\dfrac{b}{2} \right)$ and $\text{M}\equiv \left( \dfrac{a}{2},0 \right)$
Hence $\text{BC=}\sqrt{{{a}^{2}}+{{b}^{2}}},\text{CM=}\sqrt{{{b}^{2}}+\dfrac{{{a}^{2}}}{4}}$ and $\text{BL=}\sqrt{{{a}^{2}}+\dfrac{{{b}^{2}}}{4}}$.
Hence we have
$\text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}}={{a}^{2}}+\dfrac{{{b}^{2}}}{4}+{{b}^{2}}+\dfrac{{{a}^{2}}}{4}=\dfrac{5}{4}\left( {{a}^{2}}+{{b}^{2}} \right)=\dfrac{5}{4}\text{B}{{\text{C}}^{2}}$
Multiplying both sides by 4 yields the result.
Hence proved.
Complete step-by-step answer:
Pythagoras theorem: In a right-angled triangle the square of the length of the hypotenuse equals the sum of the squares of the lengths of the other two sides.

In triangle AMC by Pythagoras theorem, we have
$\text{A}{{\text{M}}^{2}}+\text{A}{{\text{C}}^{2}}=\text{C}{{\text{M}}^{2}}\text{ (i)}$
Similarly in triangle ALB by Pythagoras theorem, we have
$\text{A}{{\text{L}}^{2}}+\text{A}{{\text{B}}^{2}}=\text{B}{{\text{L}}^{2}}\text{ (ii)}$
In triangle ABC, by Pythagoras theorem, we have
$\text{A}{{\text{B}}^{2}}+\text{A}{{\text{C}}^{2}}=\text{B}{{\text{C}}^{2}}\text{ (iii)}$
Adding equation (i) and equation (ii), we get
$\text{A}{{\text{M}}^{2}}+\text{A}{{\text{C}}^{2}}+\text{A}{{\text{L}}^{2}}+\text{A}{{\text{B}}^{2}}=\text{C}{{\text{M}}^{2}}+\text{B}{{\text{L}}^{2}}$
Since M is the midpoint of AB and L is the midpoint of AC, we have
$\text{AM=}\dfrac{\text{AB}}{2}$ and $\text{AL=}\dfrac{\text{AC}}{2}$
Hence, we have
$\begin{align}
& {{\left( \dfrac{\text{AB}}{2} \right)}^{2}}+{{\left( \dfrac{\text{AC}}{2} \right)}^{2}}+\text{A}{{\text{B}}^{2}}\text{+A}{{\text{C}}^{2}}=\text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}} \\
& \Rightarrow \dfrac{\text{A}{{\text{B}}^{2}}}{4}+\dfrac{\text{A}{{\text{C}}^{2}}}{4}+\text{A}{{\text{B}}^{2}}\text{+A}{{\text{C}}^{2}}=\text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}} \\
& \Rightarrow \dfrac{5}{4}\left( \text{A}{{\text{B}}^{2}}\text{+A}{{\text{C}}^{2}} \right)=\text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}} \\
\end{align}$
Multiplying both sides by 4, we get
$5\left( \text{A}{{\text{B}}^{2}}\text{+A}{{\text{C}}^{2}} \right)=4\left( \text{B}{{\text{L}}^{2}}\text{+C}{{\text{M}}^{2}} \right)$
Now, from equation (iii), we have
$5\left( \text{B}{{\text{C}}^{2}} \right)=4\left( \text{B}{{\text{L}}^{2}}\text{+C}{{\text{M}}^{2}} \right)$
Hence, we have
$4\left( \text{B}{{\text{L}}^{2}}\text{+C}{{\text{M}}^{2}} \right)=5\text{B}{{\text{C}}^{2}}$
Hence proved.
Note: The above result can also be proved analytically i.e. using coordinate geometry.
Let $\text{A}\equiv \left( 0,0 \right),\text{B}\equiv \left( a,0 \right)$ and $\text{C}\equiv \left( 0,b \right)$be the coordinates of a right-angled triangle right angled at A.
Midpoint theorem: if $\text{A}\equiv \left( {{x}_{1}},{{y}_{1}} \right)$ and $\text{B}\equiv \left( {{x}_{2}},{{y}_{2}} \right)$, then the coordinates of the midpoint C of AB are given by $\text{C}\equiv \left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$. We use the midpoint theorem on AC and AB.
Hence we have $\text{L}\equiv \left( 0,\dfrac{b}{2} \right)$ and $\text{M}\equiv \left( \dfrac{a}{2},0 \right)$
Hence $\text{BC=}\sqrt{{{a}^{2}}+{{b}^{2}}},\text{CM=}\sqrt{{{b}^{2}}+\dfrac{{{a}^{2}}}{4}}$ and $\text{BL=}\sqrt{{{a}^{2}}+\dfrac{{{b}^{2}}}{4}}$.
Hence we have
$\text{B}{{\text{L}}^{2}}+\text{C}{{\text{M}}^{2}}={{a}^{2}}+\dfrac{{{b}^{2}}}{4}+{{b}^{2}}+\dfrac{{{a}^{2}}}{4}=\dfrac{5}{4}\left( {{a}^{2}}+{{b}^{2}} \right)=\dfrac{5}{4}\text{B}{{\text{C}}^{2}}$
Multiplying both sides by 4 yields the result.
Hence proved.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE
