
What is the Binomial Expansion of \[{\left( {1 + r} \right)^{ - 1}}\] ?
Answer
460.5k+ views
Hint: A combination is the number of ways we can combine things, when the order does not matter.
Here we will apply the Binomial Expansion to solve the given problem.
The binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial \[{(x + y)^n}\].
Formula Used:
Combination rule: \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Binomial expansion:
\[{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}\]
Where \[n \geqslant 0\], is an integer and each \[^n{C_k}\] is a positive integer known as binomial coefficient.
Complete step-by-step solution:
We need to find out the binomial expansion of \[{\left( {1 + r} \right)^{ - 1}}\].
Now we know that, according to binomial theorem it is possible to expand any nonnegative power of \[x + y\] into a sum of the form
\[{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}\]
Where \[n \geqslant 0\],is an integer and each\[^n{C_k}\]is a positive integer known as binomial coefficient.
Now if we generalise the formula, for any arbitrary number m, one can define
\[^m{C_k} = \dfrac{{m!}}{{(m - k)!k!}} = \dfrac{{m.\left( {m - 1} \right).\left( {m - 2} \right)......\left( {m - k + 1} \right)}}{{k!}}\]
If \[\left| x \right| > \left| y \right|\]we can write, \[{(x + y)^m} = \sum\limits_{k = 0}^\infty {^m{C_k}{x^{m - k}}{y^k}} { = ^m}{C_0}{x^m}{ + ^m}{C_1}{x^{m - 1}}{y^1}{ + ^m}{C_2}{x^{m - 2}}{y^2}{ + ^m}{C_3}{x^{m - 3}}{y^3} + ......\]
\[ = {x^m} + m{x^{m - 1}}{y^1} + \dfrac{{m(m - 1)}}{{2!}}{x^{m - 2}}{y^2} + \dfrac{{m(m - 1)(m - 2)}}{{3!}}{x^{m - 3}}{y^3} + ......\]
[Using the Combination rule,\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]]
When m is a nonnegative integer, the binomial coefficients for \[k > m\]are zero, so this equation reduces to the usual binomial theorem, and there are at most \[m + 1\] nonzero term. For other values of m, the series typically has infinitely many nonzero terms.
Now we can use the binomial expansion putting \[x = 1,y = r\& m = - 1\]we get,
\[{\left( {1 + r} \right)^{ - 1}} = 1 + ( - 1).1.r + \dfrac{{ - 1( - 1 - 1)}}{{2!}}.1.{r^2} + \dfrac{{ - 1( - 1 - 1)( - 1 - 2)}}{{3!}}.1.{r^3} + ......\]
Solving we get,
\[{\left( {1 + r} \right)^{ - 1}} = 1 - r + \dfrac{{1.2}}{{2!}}{r^2} - \dfrac{{1.2.3}}{{3!}}{r^3} + ......\],
Therefore, we get,
\[{\left( {1 + r} \right)^{ - 1}} = 1 - r + {r^2} - {r^3} + ......\]
[Using \[n! = n(n - 1)(n - 2)(n - 4).......2.1\]]
Hence expanding \[{\left( {1 + r} \right)^{ - 1}}\] we get,
\[{\left( {1 + r} \right)^{ - 1}} = 1 - r + {r^2} - {r^3} + ......\]
Note: In mathematics, a combination is a selection of items from a collection, such that the order of selection does not matter. For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
For a combination,
\[C\left( {n,r} \right)\]=\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Where, factorial n is denoted by n! and defined by
\[n! = n(n - 1)(n - 2)(n - 4).......2.1\]
Here we will apply the Binomial Expansion to solve the given problem.
The binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial \[{(x + y)^n}\].
Formula Used:
Combination rule: \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Binomial expansion:
\[{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}\]
Where \[n \geqslant 0\], is an integer and each \[^n{C_k}\] is a positive integer known as binomial coefficient.
Complete step-by-step solution:
We need to find out the binomial expansion of \[{\left( {1 + r} \right)^{ - 1}}\].
Now we know that, according to binomial theorem it is possible to expand any nonnegative power of \[x + y\] into a sum of the form
\[{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}\]
Where \[n \geqslant 0\],is an integer and each\[^n{C_k}\]is a positive integer known as binomial coefficient.
Now if we generalise the formula, for any arbitrary number m, one can define
\[^m{C_k} = \dfrac{{m!}}{{(m - k)!k!}} = \dfrac{{m.\left( {m - 1} \right).\left( {m - 2} \right)......\left( {m - k + 1} \right)}}{{k!}}\]
If \[\left| x \right| > \left| y \right|\]we can write, \[{(x + y)^m} = \sum\limits_{k = 0}^\infty {^m{C_k}{x^{m - k}}{y^k}} { = ^m}{C_0}{x^m}{ + ^m}{C_1}{x^{m - 1}}{y^1}{ + ^m}{C_2}{x^{m - 2}}{y^2}{ + ^m}{C_3}{x^{m - 3}}{y^3} + ......\]
\[ = {x^m} + m{x^{m - 1}}{y^1} + \dfrac{{m(m - 1)}}{{2!}}{x^{m - 2}}{y^2} + \dfrac{{m(m - 1)(m - 2)}}{{3!}}{x^{m - 3}}{y^3} + ......\]
[Using the Combination rule,\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]]
When m is a nonnegative integer, the binomial coefficients for \[k > m\]are zero, so this equation reduces to the usual binomial theorem, and there are at most \[m + 1\] nonzero term. For other values of m, the series typically has infinitely many nonzero terms.
Now we can use the binomial expansion putting \[x = 1,y = r\& m = - 1\]we get,
\[{\left( {1 + r} \right)^{ - 1}} = 1 + ( - 1).1.r + \dfrac{{ - 1( - 1 - 1)}}{{2!}}.1.{r^2} + \dfrac{{ - 1( - 1 - 1)( - 1 - 2)}}{{3!}}.1.{r^3} + ......\]
Solving we get,
\[{\left( {1 + r} \right)^{ - 1}} = 1 - r + \dfrac{{1.2}}{{2!}}{r^2} - \dfrac{{1.2.3}}{{3!}}{r^3} + ......\],
Therefore, we get,
\[{\left( {1 + r} \right)^{ - 1}} = 1 - r + {r^2} - {r^3} + ......\]
[Using \[n! = n(n - 1)(n - 2)(n - 4).......2.1\]]
Hence expanding \[{\left( {1 + r} \right)^{ - 1}}\] we get,
\[{\left( {1 + r} \right)^{ - 1}} = 1 - r + {r^2} - {r^3} + ......\]
Note: In mathematics, a combination is a selection of items from a collection, such that the order of selection does not matter. For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
For a combination,
\[C\left( {n,r} \right)\]=\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Where, factorial n is denoted by n! and defined by
\[n! = n(n - 1)(n - 2)(n - 4).......2.1\]
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

At which age domestication of animals started A Neolithic class 11 social science CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE
