
$AX = B$ where $A = \left[ {\begin{array}{*{20}{l}}
1&2&3 \\
{ - 1}&1&2 \\
1&2&4
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{l}}
1 \\
2 \\
3
\end{array}} \right]$ where $X$ is
A. $\left[ {\begin{array}{*{20}{l}}
{\dfrac{1}{3}} \\
{ - \dfrac{7}{3}} \\
2
\end{array}} \right]$
B. $\left[ {\begin{array}{*{20}{l}}
{ - \dfrac{1}{3}} \\
{\dfrac{7}{3}} \\
2
\end{array}} \right]$
C. $\left[ {\begin{array}{*{20}{l}}
{ - \dfrac{1}{3}} \\
{ - \dfrac{7}{3}} \\
2
\end{array}} \right]$
D. $\left[ {\begin{array}{*{20}{l}}
{\dfrac{1}{3}} \\
{\dfrac{7}{3}} \\
2
\end{array}} \right]$
Answer
581.1k+ views
Hint:
let us assume $X$ as $\left[ {\begin{array}{*{20}{l}}
a \\
b \\
c
\end{array}} \right]$ elements
Now when we multiply $AX$ we get another matrix which is $B$ and now we can compare and find $a,b,c$
Complete step by step solution:
Here we are given the certain equation $AX = B$ where $A,X,B$ all represent the matrix. Now we know that $A$ is $3 \times 3$ matrix and $B$ is $3 \times 1$ matrix. So $X$ must be $3 \times 1$ matrix. So that we get the product as $AX = B$
Now we are given that $A = \left[ {\begin{array}{*{20}{l}}
1&2&3 \\
{ - 1}&1&2 \\
1&2&4
\end{array}} \right]$
We need to use the multiplication of the matrix theorem.
So as we assumed $X = \left[ {\begin{array}{*{20}{l}}
a \\
b \\
c
\end{array}} \right]$
Now when we multiply $AX$ we get
$AX = $$\left[ {\begin{array}{*{20}{l}}
1&2&3 \\
{ - 1}&1&2 \\
1&2&4
\end{array}} \right]$$\left[ {\begin{array}{*{20}{l}}
a \\
b \\
c
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{l}}
{a + 2b + 3c} \\
{ - a + b + 2c} \\
{a + 2b + 4c}
\end{array}} \right]$
So we get $AX = $$\left[ {\begin{array}{*{20}{l}}
{a + 2b + 3c} \\
{ - a + b + 2c} \\
{a + 2b + 4c}
\end{array}} \right]$
Now we are given that $AX = B$
So we can write that
$\left[ {\begin{array}{*{20}{l}}
{a + 2b + 3c} \\
{ - a + b + 2c} \\
{a + 2b + 4c}
\end{array}} \right]$$ = \left[ {\begin{array}{*{20}{l}}
1 \\
2 \\
3
\end{array}} \right]$
Upon comparing we will get the three equations
$a + 2b + 3c = 1 - - - - - (1)$
$ - a + b + 2c = 2 - - - - - (2)$
$a + 2b + 4c = 3 - - - - - (3)$
On adding 1 and 2 we get that
$3b + 5c = 3 - - - - (4)$
On adding (2) and (3) we get that
$3b + 6c = 5 - - - - - (5)$
So $3b = 5 - 6c$
Putting the value of 3b in equation (4) we get that
$
5 - 6c + 5c = 3 \\
- c = 3 - 5 \\
c = 2 \\
$
Now for $b{\text{ }}b = \dfrac{{5 - 6c}}{3} = \dfrac{{5 - 12}}{3} = - \dfrac{7}{3}$
Now we know that $a + 2b + 3c = 1$
So $a - \dfrac{{14}}{3} + 6 = 1$
$
a = - 6 + 1 + \dfrac{{14}}{3} \\
a = - \dfrac{1}{3} \\
$
Hence we get that $X = \left[ {\begin{array}{*{20}{l}}
a \\
b \\
c
\end{array}} \right]$$ = \left[ {\begin{array}{*{20}{l}}
{ - \dfrac{1}{3}} \\
{ - \dfrac{7}{3}} \\
2
\end{array}} \right]$
Note:
We can also solve it like this
$AX = B$
$\left[ {\begin{array}{*{20}{l}}
1&2&3 \\
{ - 1}&1&2 \\
1&2&4
\end{array}} \right]$$X$$ = \left[ {\begin{array}{*{20}{l}}
1 \\
2 \\
3
\end{array}} \right]$
${R_1} \to {R_1} + {R_2},{R_3} \to {R_3} - {R_1}$
$\left[ {\begin{array}{*{20}{l}}
1&2&3 \\
0&3&5 \\
0&0&1
\end{array}} \right]$$X$$ = \left[ {\begin{array}{*{20}{l}}
1 \\
3 \\
2
\end{array}} \right]$
${R_2} \to \dfrac{{{R_2}}}{3}$
We get $\left[ {\begin{array}{*{20}{l}}
1&2&3 \\
0&1&{\dfrac{5}{3}} \\
0&0&1
\end{array}} \right]$$X$$ = \left[ {\begin{array}{*{20}{l}}
1 \\
1 \\
2
\end{array}} \right]$
${R_1} \to {R_1} - 2{R_2}$
$\left[ {\begin{array}{*{20}{l}}
1&0&{\dfrac{{ - 1}}{3}} \\
0&1&{\dfrac{5}{3}} \\
0&0&1
\end{array}} \right]$$X$$ = \left[ {\begin{array}{*{20}{l}}
{ - 1} \\
1 \\
2
\end{array}} \right]$
${R_1} \to {R_1} + \dfrac{{{R_3}}}{3},{R_2} \to {R_2} - \dfrac{{5{R_1}}}{3}$
$\left[ {\begin{array}{*{20}{l}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$$X$$ = \left[ {\begin{array}{*{20}{l}}
{ - \dfrac{1}{3}} \\
{ - \dfrac{7}{3}} \\
2
\end{array}} \right]$
Hence we got $X$
let us assume $X$ as $\left[ {\begin{array}{*{20}{l}}
a \\
b \\
c
\end{array}} \right]$ elements
Now when we multiply $AX$ we get another matrix which is $B$ and now we can compare and find $a,b,c$
Complete step by step solution:
Here we are given the certain equation $AX = B$ where $A,X,B$ all represent the matrix. Now we know that $A$ is $3 \times 3$ matrix and $B$ is $3 \times 1$ matrix. So $X$ must be $3 \times 1$ matrix. So that we get the product as $AX = B$
Now we are given that $A = \left[ {\begin{array}{*{20}{l}}
1&2&3 \\
{ - 1}&1&2 \\
1&2&4
\end{array}} \right]$
We need to use the multiplication of the matrix theorem.
So as we assumed $X = \left[ {\begin{array}{*{20}{l}}
a \\
b \\
c
\end{array}} \right]$
Now when we multiply $AX$ we get
$AX = $$\left[ {\begin{array}{*{20}{l}}
1&2&3 \\
{ - 1}&1&2 \\
1&2&4
\end{array}} \right]$$\left[ {\begin{array}{*{20}{l}}
a \\
b \\
c
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{l}}
{a + 2b + 3c} \\
{ - a + b + 2c} \\
{a + 2b + 4c}
\end{array}} \right]$
So we get $AX = $$\left[ {\begin{array}{*{20}{l}}
{a + 2b + 3c} \\
{ - a + b + 2c} \\
{a + 2b + 4c}
\end{array}} \right]$
Now we are given that $AX = B$
So we can write that
$\left[ {\begin{array}{*{20}{l}}
{a + 2b + 3c} \\
{ - a + b + 2c} \\
{a + 2b + 4c}
\end{array}} \right]$$ = \left[ {\begin{array}{*{20}{l}}
1 \\
2 \\
3
\end{array}} \right]$
Upon comparing we will get the three equations
$a + 2b + 3c = 1 - - - - - (1)$
$ - a + b + 2c = 2 - - - - - (2)$
$a + 2b + 4c = 3 - - - - - (3)$
On adding 1 and 2 we get that
$3b + 5c = 3 - - - - (4)$
On adding (2) and (3) we get that
$3b + 6c = 5 - - - - - (5)$
So $3b = 5 - 6c$
Putting the value of 3b in equation (4) we get that
$
5 - 6c + 5c = 3 \\
- c = 3 - 5 \\
c = 2 \\
$
Now for $b{\text{ }}b = \dfrac{{5 - 6c}}{3} = \dfrac{{5 - 12}}{3} = - \dfrac{7}{3}$
Now we know that $a + 2b + 3c = 1$
So $a - \dfrac{{14}}{3} + 6 = 1$
$
a = - 6 + 1 + \dfrac{{14}}{3} \\
a = - \dfrac{1}{3} \\
$
Hence we get that $X = \left[ {\begin{array}{*{20}{l}}
a \\
b \\
c
\end{array}} \right]$$ = \left[ {\begin{array}{*{20}{l}}
{ - \dfrac{1}{3}} \\
{ - \dfrac{7}{3}} \\
2
\end{array}} \right]$
Note:
We can also solve it like this
$AX = B$
$\left[ {\begin{array}{*{20}{l}}
1&2&3 \\
{ - 1}&1&2 \\
1&2&4
\end{array}} \right]$$X$$ = \left[ {\begin{array}{*{20}{l}}
1 \\
2 \\
3
\end{array}} \right]$
${R_1} \to {R_1} + {R_2},{R_3} \to {R_3} - {R_1}$
$\left[ {\begin{array}{*{20}{l}}
1&2&3 \\
0&3&5 \\
0&0&1
\end{array}} \right]$$X$$ = \left[ {\begin{array}{*{20}{l}}
1 \\
3 \\
2
\end{array}} \right]$
${R_2} \to \dfrac{{{R_2}}}{3}$
We get $\left[ {\begin{array}{*{20}{l}}
1&2&3 \\
0&1&{\dfrac{5}{3}} \\
0&0&1
\end{array}} \right]$$X$$ = \left[ {\begin{array}{*{20}{l}}
1 \\
1 \\
2
\end{array}} \right]$
${R_1} \to {R_1} - 2{R_2}$
$\left[ {\begin{array}{*{20}{l}}
1&0&{\dfrac{{ - 1}}{3}} \\
0&1&{\dfrac{5}{3}} \\
0&0&1
\end{array}} \right]$$X$$ = \left[ {\begin{array}{*{20}{l}}
{ - 1} \\
1 \\
2
\end{array}} \right]$
${R_1} \to {R_1} + \dfrac{{{R_3}}}{3},{R_2} \to {R_2} - \dfrac{{5{R_1}}}{3}$
$\left[ {\begin{array}{*{20}{l}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$$X$$ = \left[ {\begin{array}{*{20}{l}}
{ - \dfrac{1}{3}} \\
{ - \dfrac{7}{3}} \\
2
\end{array}} \right]$
Hence we got $X$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

