
$ax + by + c = 0$ is the polar of $\left( {1,1} \right)$ with respect to the circle ${x^2} + {y^2} - 2x + 2y + 1 = 0$ and HCF of $a,b,c$ is equal to $1$, then find ${a^2} + {b^2} + {c^2}$.
A) $0$
B) $3$
C) $5$
D) $15$
Answer
592.8k+ views
Hint: If ${x^2} + {y^2} - 2x + 2y + 1 = 0$ is the equation and we need to write the equation of polar of $\left( {{x_1},{y_1}} \right)$ with respect to this ${x^2} + {y^2} - 2x + 2y + 1 = 0$ is given as
$x{x_1} + y{y_1} - 2\left( {\dfrac{{x + {x_1}}}{2}} \right) + 2\left( {\dfrac{{y + {y_1}}}{2}} \right) = 0$ .
Complete step-by-step answer:
So question is saying that $ax + by + c = 0$ is the polar of $\left( {1,1} \right)$ with respect to the circle ${x^2} + {y^2} - 2x + 2y + 1 = 0$. So we know in polar form, we replace ${x^2}$ by $x{x_1}$, ${y^2}$ by $y{y_1}$,
$x$ by $\dfrac{{x + {x_1}}}{2}$ and $y$ by $\dfrac{{y + {y_1}}}{2}$
So, polar of $\left( {1,1} \right)$ with respect to the circle ${x^2} + {y^2} - 2x + 2y + 1 = 0$ is
$x{x_1} + y{y_1} - 2\left( {\dfrac{{x + {x_1}}}{2}} \right) + 2\left( {\dfrac{{y + {y_1}}}{2}} \right) = 0$
And here, $\left( {{x_1},{y_1}} \right) = \left( {1,1} \right)$
So putting ${x_1} = 1,{y_1} = 1$ we will get the equation.
$
x + y - \left( {x + 1} \right) + \left( {y + 1} \right) + 1 = 0 \\
2y + 1 = 0 \\
$
Here the equation of polar of $\left( {1,1} \right)$ with respect to the circle is given by
$2y + 1 = 0$
But it is given that $ax + by + c = 0$ is the polar of $\left( {1,1} \right)$ with respect to the circle.
So upon comparing equations $2y + 1 = 0$ and $ax + by + c = 0$
We get
$\dfrac{a}{0} = \dfrac{b}{2} = \dfrac{c}{1}$
So,
$b = 2,c = 1,a = 0$
As it is given that HCF of $a,b,c$ is equal to $1$, so, we found the values of $a,b,c$ that are equal to $0,2,1$ respectively.
Now according to question, it is asked to find ${a^2} + {b^2} + {c^2}$
$
= {0^2} + {2^2} + {1^2} \\
= 0 + 4 + 1 \\
= 5 \\
$
Hence option C is correct.
Note: We should know how to convert equation in polar of $\left( {{x_1},{y_1}} \right)$ just make some changes as follows:
replace ${x^2}$ by $x{x_1}$, ${y^2}$ by $y{y_1}$,
$x$ by $\dfrac{{x + {x_1}}}{2}$ and $y$ by $\dfrac{{y + {y_1}}}{2}$ and constant remains same.
HCF is one means its highest common factor will always be one.
$x{x_1} + y{y_1} - 2\left( {\dfrac{{x + {x_1}}}{2}} \right) + 2\left( {\dfrac{{y + {y_1}}}{2}} \right) = 0$ .
Complete step-by-step answer:
So question is saying that $ax + by + c = 0$ is the polar of $\left( {1,1} \right)$ with respect to the circle ${x^2} + {y^2} - 2x + 2y + 1 = 0$. So we know in polar form, we replace ${x^2}$ by $x{x_1}$, ${y^2}$ by $y{y_1}$,
$x$ by $\dfrac{{x + {x_1}}}{2}$ and $y$ by $\dfrac{{y + {y_1}}}{2}$
So, polar of $\left( {1,1} \right)$ with respect to the circle ${x^2} + {y^2} - 2x + 2y + 1 = 0$ is
$x{x_1} + y{y_1} - 2\left( {\dfrac{{x + {x_1}}}{2}} \right) + 2\left( {\dfrac{{y + {y_1}}}{2}} \right) = 0$
And here, $\left( {{x_1},{y_1}} \right) = \left( {1,1} \right)$
So putting ${x_1} = 1,{y_1} = 1$ we will get the equation.
$
x + y - \left( {x + 1} \right) + \left( {y + 1} \right) + 1 = 0 \\
2y + 1 = 0 \\
$
Here the equation of polar of $\left( {1,1} \right)$ with respect to the circle is given by
$2y + 1 = 0$
But it is given that $ax + by + c = 0$ is the polar of $\left( {1,1} \right)$ with respect to the circle.
So upon comparing equations $2y + 1 = 0$ and $ax + by + c = 0$
We get
$\dfrac{a}{0} = \dfrac{b}{2} = \dfrac{c}{1}$
So,
$b = 2,c = 1,a = 0$
As it is given that HCF of $a,b,c$ is equal to $1$, so, we found the values of $a,b,c$ that are equal to $0,2,1$ respectively.
Now according to question, it is asked to find ${a^2} + {b^2} + {c^2}$
$
= {0^2} + {2^2} + {1^2} \\
= 0 + 4 + 1 \\
= 5 \\
$
Hence option C is correct.
Note: We should know how to convert equation in polar of $\left( {{x_1},{y_1}} \right)$ just make some changes as follows:
replace ${x^2}$ by $x{x_1}$, ${y^2}$ by $y{y_1}$,
$x$ by $\dfrac{{x + {x_1}}}{2}$ and $y$ by $\dfrac{{y + {y_1}}}{2}$ and constant remains same.
HCF is one means its highest common factor will always be one.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

