
How far away from the center of the earth does the acceleration due to gravity be reduced by $1\% $ of its value at the earth’s surface? The radius of earth is $R = 6400\;{\text{km}}$.
Answer
585k+ views
Hint In this question, first use the acceleration due to gravity formula and find the relation between the distance of the point where the gravity reduces and the radius of the Earth. After that substitute the values to obtain the desired result.
Complete step by step answer
Before the solving we talk about the acceleration due to gravity we know that acceleration gained by an object by the gravitational force .its SI unit is ${\text{m/}}{{\text{s}}^{\text{2}}}$. The acceleration due to gravity has both magnitude and direction, so it is a vector quantity. We also know that acceleration due to gravity is represented by $g$. It has a specific value on the surface of the earth at sea level is $9.8\;{\text{m/}}{{\text{s}}^{\text{2}}}$.
At distance $r$ from the center of the earth value of ${g^1}$ which is $1\% $ of its value at the earth’s surface that means $0.99g$.
By using the formula, obtain the relation between the distance of the point where the gravity reduces and the radius of the Earth as,
${g^1} = \dfrac{{g{R^2}}}{{{r^2}}}$
$
0.99g = \dfrac{{g{R^2}}}{{{r^2}}} \\
\sqrt {0.99} = \dfrac{R}{r} \\
$
$
r = \dfrac{R}{{\sqrt {0.99} }} \\
= 1.005R \\
$
Now, substitute the value of the radius of the Earth as $R = 6400\;{\text{km}}$
$
r = 1.005\left( {6400} \right) \\
= 6432\;{\text{km}} \\
$
Thus, the distance of the point where the gravity reduces $1\% $ is $6432\;{\text{km}}$.
Note:
The acceleration of gravity decreases as the distance increases from the surface of the Earth while the acceleration due to gravity increases as we move towards the core of the earth that is towards the center of Earth.
Complete step by step answer
Before the solving we talk about the acceleration due to gravity we know that acceleration gained by an object by the gravitational force .its SI unit is ${\text{m/}}{{\text{s}}^{\text{2}}}$. The acceleration due to gravity has both magnitude and direction, so it is a vector quantity. We also know that acceleration due to gravity is represented by $g$. It has a specific value on the surface of the earth at sea level is $9.8\;{\text{m/}}{{\text{s}}^{\text{2}}}$.
At distance $r$ from the center of the earth value of ${g^1}$ which is $1\% $ of its value at the earth’s surface that means $0.99g$.
By using the formula, obtain the relation between the distance of the point where the gravity reduces and the radius of the Earth as,
${g^1} = \dfrac{{g{R^2}}}{{{r^2}}}$
$
0.99g = \dfrac{{g{R^2}}}{{{r^2}}} \\
\sqrt {0.99} = \dfrac{R}{r} \\
$
$
r = \dfrac{R}{{\sqrt {0.99} }} \\
= 1.005R \\
$
Now, substitute the value of the radius of the Earth as $R = 6400\;{\text{km}}$
$
r = 1.005\left( {6400} \right) \\
= 6432\;{\text{km}} \\
$
Thus, the distance of the point where the gravity reduces $1\% $ is $6432\;{\text{km}}$.
Note:
The acceleration of gravity decreases as the distance increases from the surface of the Earth while the acceleration due to gravity increases as we move towards the core of the earth that is towards the center of Earth.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

