
At $x = \dfrac{{5\pi }}{6}$ , the value of $2\sin 3x + 3\cos 3x$ is
1. $0$
2. $1$
3. $ - 1$
4. None of these
Answer
497.7k+ views
Hint: We know that from trigonometric identity,
$\sin \left( {2\pi + \theta } \right) = \sin \theta $
And
$\cos \left( {2\pi + \theta } \right) = \cos \theta $
Given $x = \dfrac{{5\pi }}{6}$
Here we are asked to find the value of $2\sin 3x + 3\cos 3x$
Substitute the value of $x$ in $2\sin 3x + 3\cos 3x$
$ \Rightarrow 2\sin 3x + 3\cos 3x = 2\sin \left( {3 \times \dfrac{{5\pi }}{6}} \right) + 3\cos \left( {3 \times \dfrac{{5\pi }}{6}} \right)$
$ = 2\sin \left( {\dfrac{{5\pi }}{2}} \right) + 3\cos \left( {\dfrac{{5\pi }}{2}} \right)$
Write the above equation in terms of $\sin \left( {2\pi + \theta } \right)$ and $\cos \left( {2\pi + \theta } \right)$ .
Then simplify the equation to get the value of the given equation.
Complete step-by-step solution:
Given $x = \dfrac{{5\pi }}{6}$
$\therefore 2\sin 3x + 3\cos 3x = 2\sin \left( {3 \times \dfrac{{5\pi }}{6}} \right) + 3\cos \left( {3 \times \dfrac{{5\pi }}{6}} \right)$
$ = 2\sin \left( {\dfrac{{5\pi }}{2}} \right) + 3\cos \left( {\dfrac{{5\pi }}{2}} \right)$
Writing the above equation in terms of $\sin \left( {2\pi + \theta } \right)$ and $\cos \left( {2\pi + \theta } \right)$ , we get
$2\sin 3x + 3\cos 3x = 2\sin \left( {2\pi + \dfrac{\pi }{2}} \right) + 3\cos \left( {2\pi + \dfrac{\pi }{2}} \right)$
We know that $\sin \left( {2\pi + \theta } \right) = \sin \theta $ and $\cos \left( {2\pi + \theta } \right) = \cos \theta $
$\therefore 2\sin 3x + 3\cos 3x = 2\sin \left( {\dfrac{\pi }{2}} \right) + 3\cos \left( {\dfrac{\pi }{2}} \right)$
We know that $\sin \left( {\dfrac{\pi }{2}} \right) = 1$ and $\cos \left( {\dfrac{\pi }{2}} \right) = 0$
$\therefore 2\sin 3x + 3\cos 3x = 2 \times 1 + 3 \times 0 = 2$
Hence the value of $2\sin 3x + 3\cos 3x$ is $2$
Note: The formula $\sin \left( {2\pi + \theta } \right) = \sin \theta $ and $\cos \left( {2\pi + \theta } \right) = \cos \theta $ is derived using trigonometric addition formula
We know that $\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b$
$\therefore \sin \left( {2\pi + \theta } \right) = \sin 2\pi \cos \theta + \cos 2\pi \sin \theta $
The value of $\sin 2\pi = 0$ and $\cos 2\pi = 1$
$ \Rightarrow \sin \left( {2\pi + \theta } \right) = 0 \times \cos \theta + 1 \times \sin \theta $
$\therefore \sin \left( {2\pi + \theta } \right) = \sin \theta $
Similarly, $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$
$\therefore \cos \left( {2\pi + \theta } \right) = \cos 2\pi \cos \theta - \sin 2\pi \sin \theta $
$ \Rightarrow \cos \left( {2\pi + \theta } \right) = \cos \theta $
$\sin \left( {2\pi + \theta } \right) = \sin \theta $
And
$\cos \left( {2\pi + \theta } \right) = \cos \theta $
Given $x = \dfrac{{5\pi }}{6}$
Here we are asked to find the value of $2\sin 3x + 3\cos 3x$
Substitute the value of $x$ in $2\sin 3x + 3\cos 3x$
$ \Rightarrow 2\sin 3x + 3\cos 3x = 2\sin \left( {3 \times \dfrac{{5\pi }}{6}} \right) + 3\cos \left( {3 \times \dfrac{{5\pi }}{6}} \right)$
$ = 2\sin \left( {\dfrac{{5\pi }}{2}} \right) + 3\cos \left( {\dfrac{{5\pi }}{2}} \right)$
Write the above equation in terms of $\sin \left( {2\pi + \theta } \right)$ and $\cos \left( {2\pi + \theta } \right)$ .
Then simplify the equation to get the value of the given equation.
Complete step-by-step solution:
Given $x = \dfrac{{5\pi }}{6}$
$\therefore 2\sin 3x + 3\cos 3x = 2\sin \left( {3 \times \dfrac{{5\pi }}{6}} \right) + 3\cos \left( {3 \times \dfrac{{5\pi }}{6}} \right)$
$ = 2\sin \left( {\dfrac{{5\pi }}{2}} \right) + 3\cos \left( {\dfrac{{5\pi }}{2}} \right)$
Writing the above equation in terms of $\sin \left( {2\pi + \theta } \right)$ and $\cos \left( {2\pi + \theta } \right)$ , we get
$2\sin 3x + 3\cos 3x = 2\sin \left( {2\pi + \dfrac{\pi }{2}} \right) + 3\cos \left( {2\pi + \dfrac{\pi }{2}} \right)$
We know that $\sin \left( {2\pi + \theta } \right) = \sin \theta $ and $\cos \left( {2\pi + \theta } \right) = \cos \theta $
$\therefore 2\sin 3x + 3\cos 3x = 2\sin \left( {\dfrac{\pi }{2}} \right) + 3\cos \left( {\dfrac{\pi }{2}} \right)$
We know that $\sin \left( {\dfrac{\pi }{2}} \right) = 1$ and $\cos \left( {\dfrac{\pi }{2}} \right) = 0$
$\therefore 2\sin 3x + 3\cos 3x = 2 \times 1 + 3 \times 0 = 2$
Hence the value of $2\sin 3x + 3\cos 3x$ is $2$
Note: The formula $\sin \left( {2\pi + \theta } \right) = \sin \theta $ and $\cos \left( {2\pi + \theta } \right) = \cos \theta $ is derived using trigonometric addition formula
We know that $\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b$
$\therefore \sin \left( {2\pi + \theta } \right) = \sin 2\pi \cos \theta + \cos 2\pi \sin \theta $
The value of $\sin 2\pi = 0$ and $\cos 2\pi = 1$
$ \Rightarrow \sin \left( {2\pi + \theta } \right) = 0 \times \cos \theta + 1 \times \sin \theta $
$\therefore \sin \left( {2\pi + \theta } \right) = \sin \theta $
Similarly, $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$
$\therefore \cos \left( {2\pi + \theta } \right) = \cos 2\pi \cos \theta - \sin 2\pi \sin \theta $
$ \Rightarrow \cos \left( {2\pi + \theta } \right) = \cos \theta $
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

