
At what temperature will both Celsius and Fahrenheit’s scales read the same value?
(A) $\text{100 }\!\!{}^\circ\!\!\text{ }$
(B) $\text{180 }\!\!{}^\circ\!\!\text{ }$
(C) $\text{40 }\!\!{}^\circ\!\!\text{ }$
(D) \[-40{}^\circ \]
Answer
573k+ views
Hint: Think about what is the relationship between temperature parameters, Celsius and Fahrenheit. Generally we measure body temperature in Fahrenheit. We know the relation, $\text{ }\!\!{}^\circ\!\!\text{ F = ( }\!\!{}^\circ\!\!\text{ C }\!\!\times\!\!\text{ }\dfrac{\text{9}}{\text{5}}\text{) + 32}$. Just assume Celsius is equal to Fahrenheit and solve the equation to get the answer.
Complete step by step solution:
The formulas for converting between degree Celsius and degree Fahrenheit are:
\[\] $\text{ }\!\!{}^\circ\!\!\text{ F = ( }\!\!{}^\circ\!\!\text{ C }\!\!\times\!\!\text{ }\dfrac{\text{9}}{\text{5}}\text{) + 32}$
${}^\circ \text{C=(}{}^\circ \text{F}-32)\times \dfrac{5}{9}$
Now we should know how to find the temperature when both are equal, we use an old algebra trick and just set $\text{ }\!\!{}^\circ\!\!\text{ F = }\!\!{}^\circ\!\!\text{ C}$, and solve the equations given below:
$\text{ }\!\!{}^\circ\!\!\text{ C = ( }\!\!{}^\circ\!\!\text{ C }\!\!\times\!\!\text{ }\dfrac{\text{9}}{\text{5}}\text{) + 32}$
$\Rightarrow \text{ }\!\!{}^\circ\!\!\text{ C}-\text{( }\!\!{}^\circ\!\!\text{ C}\times \dfrac{9}{5})=32$
$\Rightarrow \dfrac{-4}{5}\times \text{ }\!\!{}^\circ\!\!\text{ C}=32$
\[\Rightarrow \text{ }\!\!{}^\circ\!\!\text{ C}=-32\times \dfrac{5}{4}\]
$\Rightarrow \text{ }\!\!{}^\circ\!\!\text{ C}=-40$
So on the Celsius scale the temperature is -40.
Now we have to find the temperature on the Fahrenheit scale.
$\text{ }\!\!{}^\circ\!\!\text{ F = ( }\!\!{}^\circ\!\!\text{ F }\!\!\times\!\!\text{ }\dfrac{\text{9}}{\text{5}}\text{) + 32}$
$\Rightarrow {}^\circ \text{F}-({}^\circ \text{F}\times \dfrac{9}{5})=32$
$\Rightarrow \dfrac{-4}{5}\times {}^\circ \text{F}=32$
$\Rightarrow {}^\circ \text{F}=-32\times \dfrac{5}{4}$$\Rightarrow {}^\circ \text{F}=-40$
$\Rightarrow {}^\circ \text{F}=-40$
So on the Fahrenheit scale, the temperature is -40.
Therefore, at -40 both Celsius and Fahrenheit scales read the same value.
Hence, the correct answer is Option D.
Note: We should be knowing the main difference between the Celsius and the Fahrenheit scale. The boiling point of water is $100\text{ }\!\!{}^\circ\!\!\text{ C}$ while in Fahrenheit scale it is \[212{}^\circ \text{F}\]. Fahrenheit has 0 degrees at the point where the lowest temperature could be achieved in a salt and water mixture. The actual freezing point of water in the Fahrenheit scale is at $32{}^\circ \text{F}$. Fahrenheit is believed to be a superior and precise measuring scale than Celsius since people tend to care more about air temperature than water temperature. We can get a more precise temperature reading in Fahrenheit because it uses more than twice the Celsius scale.
Complete step by step solution:
The formulas for converting between degree Celsius and degree Fahrenheit are:
\[\] $\text{ }\!\!{}^\circ\!\!\text{ F = ( }\!\!{}^\circ\!\!\text{ C }\!\!\times\!\!\text{ }\dfrac{\text{9}}{\text{5}}\text{) + 32}$
${}^\circ \text{C=(}{}^\circ \text{F}-32)\times \dfrac{5}{9}$
Now we should know how to find the temperature when both are equal, we use an old algebra trick and just set $\text{ }\!\!{}^\circ\!\!\text{ F = }\!\!{}^\circ\!\!\text{ C}$, and solve the equations given below:
$\text{ }\!\!{}^\circ\!\!\text{ C = ( }\!\!{}^\circ\!\!\text{ C }\!\!\times\!\!\text{ }\dfrac{\text{9}}{\text{5}}\text{) + 32}$
$\Rightarrow \text{ }\!\!{}^\circ\!\!\text{ C}-\text{( }\!\!{}^\circ\!\!\text{ C}\times \dfrac{9}{5})=32$
$\Rightarrow \dfrac{-4}{5}\times \text{ }\!\!{}^\circ\!\!\text{ C}=32$
\[\Rightarrow \text{ }\!\!{}^\circ\!\!\text{ C}=-32\times \dfrac{5}{4}\]
$\Rightarrow \text{ }\!\!{}^\circ\!\!\text{ C}=-40$
So on the Celsius scale the temperature is -40.
Now we have to find the temperature on the Fahrenheit scale.
$\text{ }\!\!{}^\circ\!\!\text{ F = ( }\!\!{}^\circ\!\!\text{ F }\!\!\times\!\!\text{ }\dfrac{\text{9}}{\text{5}}\text{) + 32}$
$\Rightarrow {}^\circ \text{F}-({}^\circ \text{F}\times \dfrac{9}{5})=32$
$\Rightarrow \dfrac{-4}{5}\times {}^\circ \text{F}=32$
$\Rightarrow {}^\circ \text{F}=-32\times \dfrac{5}{4}$$\Rightarrow {}^\circ \text{F}=-40$
$\Rightarrow {}^\circ \text{F}=-40$
So on the Fahrenheit scale, the temperature is -40.
Therefore, at -40 both Celsius and Fahrenheit scales read the same value.
Hence, the correct answer is Option D.
Note: We should be knowing the main difference between the Celsius and the Fahrenheit scale. The boiling point of water is $100\text{ }\!\!{}^\circ\!\!\text{ C}$ while in Fahrenheit scale it is \[212{}^\circ \text{F}\]. Fahrenheit has 0 degrees at the point where the lowest temperature could be achieved in a salt and water mixture. The actual freezing point of water in the Fahrenheit scale is at $32{}^\circ \text{F}$. Fahrenheit is believed to be a superior and precise measuring scale than Celsius since people tend to care more about air temperature than water temperature. We can get a more precise temperature reading in Fahrenheit because it uses more than twice the Celsius scale.
Recently Updated Pages
Questions & Answers - Ask your doubts

A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE

