
At equimolar concentrations of $\text{ F}{{\text{e}}^{\text{2+}}}$ and$\text{ F}{{\text{e}}^{\text{3+}}}$, what must [Ag+] be so that the voltage of the galvanic cell made from the \[\text{ (A}{{\text{g}}^{\text{+}}}\text{ }\!\!|\!\!\text{ Ag) }\!\!~\!\!\text{ }\] and \[\text{ (F}{{\text{e}}^{\text{3+}}}\text{ }\!\!|\!\!\text{ F}{{\text{e}}^{\text{2+}}}\text{) }\!\!~\!\!\text{ }\] electrodes equals zero?
\[\text{ F}{{\text{e}}^{\text{2+}}}\text{+A}{{\text{g}}^{\text{+}}}\rightleftharpoons \text{F}{{\text{e}}^{\text{3+}}}\text{+Ag}\]
${{\text{E}}_{\text{A}{{\text{g}}^{\text{+}}}\text{/Ag}}}=0.7991$; ${{\text{E}}_{\text{F}{{\text{e}}^{\text{3+}}}\text{/F}{{\text{e}}^{\text{2+}}}}}=0.771$
Answer
576.3k+ views
Hint: The Nernst equation states a relation between the cell potential \[{{\text{E}}_{\text{cell}}}\]with the standard cell potential$\text{E}_{\text{cell}}^{\text{0}}$, temperature T, and the reaction quotient. The reaction quotient for the redox reaction is equal to the ratio of the concentration of reducing and oxidizing species.
The Nernst equation is as shown below,
${{\text{E}}_{\text{cell}}}\text{= E}_{\text{cell}}^{\text{0}}\text{ }-\text{ }\dfrac{0.059}{\text{n}}\text{ ln}\dfrac{\left[ \text{Red} \right]}{\left[ \text{Oxd} \right]}$
The $\text{ F}{{\text{e}}^{\text{2+}}}$ oxidized to $\text{ F}{{\text{e}}^{\text{3+}}}$ and $\text{ A}{{\text{g}}^{\text{+}}}$ reduces to the$\text{ Ag}$. Here, the number of electrons involves equal to one.
Complete step by step answer:
We know that reaction between $\text{ F}{{\text{e}}^{\text{2+}}}$ and $\text{ A}{{\text{g}}^{\text{+}}}$ . It can be written as:
\[\text{ F}{{\text{e}}^{\text{2+}}}\text{+A}{{\text{g}}^{\text{+}}}\rightleftharpoons \text{F}{{\text{e}}^{\text{3+}}}\text{+Ag}\]
Here, the$\text{ F}{{\text{e}}^{\text{2+}}}$undergoes the oxidation to form $\text{ F}{{\text{e}}^{\text{3+}}}$and $\text{ A}{{\text{g}}^{\text{+}}}$ reduces to the$\text{ Ag}$. We are given that, the concentration of $\text{ F}{{\text{e}}^{\text{2+}}}$ and $\text{ F}{{\text{e}}^{\text{3+}}}$ are same or equimolar. Therefore,
$\text{ }\left[ \text{ F}{{\text{e}}^{\text{2+}}} \right]=\left[ \text{ F}{{\text{e}}^{\text{3+}}} \right]$ and the voltage of the galvanic cell is zero that is \[{{\text{E}}_{\text{cell}}}\text{= 0}\]
We have to find the concentration of $\text{ A}{{\text{g}}^{\text{+}}}$ .
We will use the Nernst equation. the Nernst equation is given as follows,
${{\text{E}}_{\text{cell}}}\text{= E}_{\text{cell}}^{\text{0}}\text{ }-\text{ }\dfrac{\text{RT}}{\text{nF}}\text{ ln}\dfrac{\left[ \text{Red} \right]}{\left[ \text{Oxd} \right]}$
Where,
\[{{\text{E}}_{\text{cell}}}\] is the voltage of the cell
$\text{E}_{\text{cell}}^{\text{0}}$ is the standard potential of cell
R is the gas constant
T is the absolute temperature
n is the number of electrons involved in the redox reaction
F is the faraday's constant 96500 C.
$\left[ \text{Red} \right]$ is the concentration of reducing species
$\left[ \text{Oxd} \right]$ is the concentration of oxidized species
The equation can be modified for absolute temperature as room temperature we get,
${{\text{E}}_{\text{cell}}}\text{= E}_{\text{cell}}^{\text{0}}\text{ }-\text{ }\dfrac{0.059}{\text{n}}\text{ ln}\dfrac{\left[ \text{Red} \right]}{\left[ \text{Oxd} \right]}$
Now, let's substitute the values in the Nernst equation. We have,
${{\text{E}}_{\text{cell}}}\text{= E}_{\text{cell}}^{\text{0}}\text{ - }\dfrac{\text{0}\text{.059}}{\text{n}}\text{ ln}\dfrac{\left[ \text{F}{{\text{e}}^{\text{3+}}} \right]}{\left[ \text{F}{{\text{e}}^{\text{2+}}} \right]\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}$
Let us calculate the $\text{E}_{\text{cell}}^{\text{0}}$.
$\begin{align}
& \text{E}_{\text{cell}}^{\text{0}}\text{= }{{\text{E}}_{\text{A}{{\text{g}}^{\text{+}}}\text{/Ag}}}-{{\text{E}}_{\text{F}{{\text{e}}^{\text{3+}}}\text{/F}{{\text{e}}^{\text{2+}}}}} \\
& \text{ = 0}\text{.7991 }-\text{ 0}\text{.771} \\
& \text{ = 0}\text{.0281 V} \\
\end{align}$
Therefore, the $\text{E}_{\text{cell}}^{\text{0}}$ is $\text{0}\text{.0281 V}$
Substitute the values in the first equation. We have,
$\begin{align}
& \text{0 = 0}\text{.0281 - }\dfrac{\text{0}\text{.059}}{1}\text{ lo}{{\text{g}}_{\text{10}}}\dfrac{\left[ \text{F}{{\text{e}}^{\text{3+}}} \right]}{\left[ \text{F}{{\text{e}}^{\text{2+}}} \right]\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}\text{ }\because \text{ n = 1 }{{\text{e}}^{\text{-}}} \\
& \text{since, }\left[ \text{F}{{\text{e}}^{\text{3+}}} \right]\text{=}\left[ \text{F}{{\text{e}}^{\text{2+}}} \right] \\
& \text{we have ,} \\
& \text{0 = 0}\text{.0281 - }\dfrac{\text{0}\text{.059}}{1}\text{ lo}{{\text{g}}_{\text{10}}}\dfrac{\left[ \text{F}{{{\text{}}}^{\text{2+}}} \right]}{\left[ \text{F}{{{\text{}}}^{\text{2+}}} \right]\left[ \text{A}{{\text{g}}^{\text{+}}} \right]} \\
& \text{0 = 0}\text{.0281 - }\dfrac{\text{0}\text{.059}}{1}\text{ lo}{{\text{g}}_{\text{10}}}\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]} \\
\end{align}$
We are interests to find out the $\left[ \text{A}{{\text{g}}^{\text{+}}} \right]$, rearrange with respect we have,
$\begin{align}
& \text{ 0 = 0}\text{.0281 - }\dfrac{\text{0}\text{.059}}{1}\text{ lo}{{\text{g}}_{\text{10}}}\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]} \\
& \Rightarrow \text{0}\text{.0281 = 0}\text{.059 lo}{{\text{g}}_{\text{10}}}\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]} \\
& \Rightarrow \text{ lo}{{\text{g}}_{\text{10}}}\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}\text{ = }\dfrac{\text{0}\text{.0281}}{\text{0}\text{.059}} \\
& \Rightarrow \text{ lo}{{\text{g}}_{\text{10}}}\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}\text{ = 0}\text{.476} \\
& \text{Take antilog we have,} \\
& \Rightarrow \text{ }\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}\text{ = 1}{{\text{0}}^{\text{0}\text{.476}}} \\
& \Rightarrow \text{ }\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}\text{ = 2}\text{.992} \\
& \Rightarrow \left[ \text{A}{{\text{g}}^{\text{+}}} \right]\text{ = }\dfrac{1}{\text{2}\text{.992}} \\
& \therefore \left[ \text{A}{{\text{g}}^{\text{+}}} \right]=\text{ 0}\text{.334 M} \\
\end{align}$
Therefore, the concentration of $\left[ \text{A}{{\text{g}}^{\text{+}}} \right]$ is $\text{0}\text{.334 M}$.
Note: The Nernst equation can be used to determine the equilibrium constant of the reaction. The Nernst equation can be written as,
$\text{ E}_{\text{cell}}^{\text{0}}\text{ = }\dfrac{\text{RT}}{\text{nF}}\text{ ln K}$
At equilibrium constant, ${{\text{E}}_{\text{cell}}}$ is equal to zero and K is the equilibrium constant.
The Nernst equation is as shown below,
${{\text{E}}_{\text{cell}}}\text{= E}_{\text{cell}}^{\text{0}}\text{ }-\text{ }\dfrac{0.059}{\text{n}}\text{ ln}\dfrac{\left[ \text{Red} \right]}{\left[ \text{Oxd} \right]}$
The $\text{ F}{{\text{e}}^{\text{2+}}}$ oxidized to $\text{ F}{{\text{e}}^{\text{3+}}}$ and $\text{ A}{{\text{g}}^{\text{+}}}$ reduces to the$\text{ Ag}$. Here, the number of electrons involves equal to one.
Complete step by step answer:
We know that reaction between $\text{ F}{{\text{e}}^{\text{2+}}}$ and $\text{ A}{{\text{g}}^{\text{+}}}$ . It can be written as:
\[\text{ F}{{\text{e}}^{\text{2+}}}\text{+A}{{\text{g}}^{\text{+}}}\rightleftharpoons \text{F}{{\text{e}}^{\text{3+}}}\text{+Ag}\]
Here, the$\text{ F}{{\text{e}}^{\text{2+}}}$undergoes the oxidation to form $\text{ F}{{\text{e}}^{\text{3+}}}$and $\text{ A}{{\text{g}}^{\text{+}}}$ reduces to the$\text{ Ag}$. We are given that, the concentration of $\text{ F}{{\text{e}}^{\text{2+}}}$ and $\text{ F}{{\text{e}}^{\text{3+}}}$ are same or equimolar. Therefore,
$\text{ }\left[ \text{ F}{{\text{e}}^{\text{2+}}} \right]=\left[ \text{ F}{{\text{e}}^{\text{3+}}} \right]$ and the voltage of the galvanic cell is zero that is \[{{\text{E}}_{\text{cell}}}\text{= 0}\]
We have to find the concentration of $\text{ A}{{\text{g}}^{\text{+}}}$ .
We will use the Nernst equation. the Nernst equation is given as follows,
${{\text{E}}_{\text{cell}}}\text{= E}_{\text{cell}}^{\text{0}}\text{ }-\text{ }\dfrac{\text{RT}}{\text{nF}}\text{ ln}\dfrac{\left[ \text{Red} \right]}{\left[ \text{Oxd} \right]}$
Where,
\[{{\text{E}}_{\text{cell}}}\] is the voltage of the cell
$\text{E}_{\text{cell}}^{\text{0}}$ is the standard potential of cell
R is the gas constant
T is the absolute temperature
n is the number of electrons involved in the redox reaction
F is the faraday's constant 96500 C.
$\left[ \text{Red} \right]$ is the concentration of reducing species
$\left[ \text{Oxd} \right]$ is the concentration of oxidized species
The equation can be modified for absolute temperature as room temperature we get,
${{\text{E}}_{\text{cell}}}\text{= E}_{\text{cell}}^{\text{0}}\text{ }-\text{ }\dfrac{0.059}{\text{n}}\text{ ln}\dfrac{\left[ \text{Red} \right]}{\left[ \text{Oxd} \right]}$
Now, let's substitute the values in the Nernst equation. We have,
${{\text{E}}_{\text{cell}}}\text{= E}_{\text{cell}}^{\text{0}}\text{ - }\dfrac{\text{0}\text{.059}}{\text{n}}\text{ ln}\dfrac{\left[ \text{F}{{\text{e}}^{\text{3+}}} \right]}{\left[ \text{F}{{\text{e}}^{\text{2+}}} \right]\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}$
Let us calculate the $\text{E}_{\text{cell}}^{\text{0}}$.
$\begin{align}
& \text{E}_{\text{cell}}^{\text{0}}\text{= }{{\text{E}}_{\text{A}{{\text{g}}^{\text{+}}}\text{/Ag}}}-{{\text{E}}_{\text{F}{{\text{e}}^{\text{3+}}}\text{/F}{{\text{e}}^{\text{2+}}}}} \\
& \text{ = 0}\text{.7991 }-\text{ 0}\text{.771} \\
& \text{ = 0}\text{.0281 V} \\
\end{align}$
Therefore, the $\text{E}_{\text{cell}}^{\text{0}}$ is $\text{0}\text{.0281 V}$
Substitute the values in the first equation. We have,
$\begin{align}
& \text{0 = 0}\text{.0281 - }\dfrac{\text{0}\text{.059}}{1}\text{ lo}{{\text{g}}_{\text{10}}}\dfrac{\left[ \text{F}{{\text{e}}^{\text{3+}}} \right]}{\left[ \text{F}{{\text{e}}^{\text{2+}}} \right]\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}\text{ }\because \text{ n = 1 }{{\text{e}}^{\text{-}}} \\
& \text{since, }\left[ \text{F}{{\text{e}}^{\text{3+}}} \right]\text{=}\left[ \text{F}{{\text{e}}^{\text{2+}}} \right] \\
& \text{we have ,} \\
& \text{0 = 0}\text{.0281 - }\dfrac{\text{0}\text{.059}}{1}\text{ lo}{{\text{g}}_{\text{10}}}\dfrac{\left[ \text{F}{{{\text{}}}^{\text{2+}}} \right]}{\left[ \text{F}{{{\text{}}}^{\text{2+}}} \right]\left[ \text{A}{{\text{g}}^{\text{+}}} \right]} \\
& \text{0 = 0}\text{.0281 - }\dfrac{\text{0}\text{.059}}{1}\text{ lo}{{\text{g}}_{\text{10}}}\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]} \\
\end{align}$
We are interests to find out the $\left[ \text{A}{{\text{g}}^{\text{+}}} \right]$, rearrange with respect we have,
$\begin{align}
& \text{ 0 = 0}\text{.0281 - }\dfrac{\text{0}\text{.059}}{1}\text{ lo}{{\text{g}}_{\text{10}}}\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]} \\
& \Rightarrow \text{0}\text{.0281 = 0}\text{.059 lo}{{\text{g}}_{\text{10}}}\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]} \\
& \Rightarrow \text{ lo}{{\text{g}}_{\text{10}}}\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}\text{ = }\dfrac{\text{0}\text{.0281}}{\text{0}\text{.059}} \\
& \Rightarrow \text{ lo}{{\text{g}}_{\text{10}}}\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}\text{ = 0}\text{.476} \\
& \text{Take antilog we have,} \\
& \Rightarrow \text{ }\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}\text{ = 1}{{\text{0}}^{\text{0}\text{.476}}} \\
& \Rightarrow \text{ }\dfrac{1}{\left[ \text{A}{{\text{g}}^{\text{+}}} \right]}\text{ = 2}\text{.992} \\
& \Rightarrow \left[ \text{A}{{\text{g}}^{\text{+}}} \right]\text{ = }\dfrac{1}{\text{2}\text{.992}} \\
& \therefore \left[ \text{A}{{\text{g}}^{\text{+}}} \right]=\text{ 0}\text{.334 M} \\
\end{align}$
Therefore, the concentration of $\left[ \text{A}{{\text{g}}^{\text{+}}} \right]$ is $\text{0}\text{.334 M}$.
Note: The Nernst equation can be used to determine the equilibrium constant of the reaction. The Nernst equation can be written as,
$\text{ E}_{\text{cell}}^{\text{0}}\text{ = }\dfrac{\text{RT}}{\text{nF}}\text{ ln K}$
At equilibrium constant, ${{\text{E}}_{\text{cell}}}$ is equal to zero and K is the equilibrium constant.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Why is steel more elastic than rubber class 11 physics CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

