
At 407 K the rate constant of a chemical reaction is $\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$ and at 420 K, the rate constant is$\text{1}\text{.9 x 1}{{\text{0}}^{-4}}\text{ }{{\text{s}}^{-1}}$ . Calculate the frequency factor of the reaction.
Answer
592.8k+ views
Hint: The equation called Arrhenius equation is usually written as $k=A{{e}^{-{{E}_{a}}/RT}}$ where the pre-exponential factor A is a constant and is called frequency factor and ${{E}_{a}}$ is called the activation energy, R is the gas constant and T is the temperature. The activation energy is calculated by the formula $\log \dfrac{{{k}_{2}}}{{{k}_{1}}}=\dfrac{{{E}_{a}}}{2.303R}\left[ \dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}{{T}_{1}}} \right]$ where ${{k}_{1}}\text{ and }{{k}_{2}}$ are rate constants at different temperatures.
Complete answer:
According to the question,
Rate constant of the first reaction is $\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$at 407 K.
So,
${{k}_{1}}=\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$
${{T}_{1}}=407K$
Rate constant of the second reaction is $\text{1}\text{.9 x 1}{{\text{0}}^{-4}}\text{ }{{\text{s}}^{-1}}$ at 420 K
So,
${{k}_{2}}=\text{1}\text{.9 x 1}{{\text{0}}^{-4}}\text{ }{{\text{s}}^{-1}}$
${{T}_{2}}=420K$
The value of gas constant is taken in the SI unit. The value of R = 8.314 $Jmo{{l}^{-1}}{{K}^{-1}}$
So, with all these factors we can calculate the value of activation energy.
The activation energy is calculated with the formula = $\log \dfrac{{{k}_{2}}}{{{k}_{1}}}=\dfrac{{{E}_{a}}}{2.303R}\left[ \dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}{{T}_{1}}} \right]$
So, putting all the values, we get
$\log \frac{1.9\text{ x 1}{{\text{0}}^{-4}}}{9.5\text{ x 1}{{\text{0}}^{-5}}}=\dfrac{{{E}_{a}}}{2.303\text{ x 8}\text{.314}}\left[ \dfrac{420-407}{420\text{ x 407}} \right]$
${{E}_{a}}=75782.3Jmo{{l}^{-1}}$
So, the value of activation energy is 757582.3 joule per mole
Since, we know the value of activation energy is calculated, now, the value of frequency factor can be calculated easily.
According to the Arrhenius equation,
$k=A{{e}^{-{{E}_{a}}/RT}}$
The logarithm form of this equation will be,
$\log k=\log A-\dfrac{{{E}_{a}}}{2.303RT}$
Since, we have two reactions, we can put the value of any reaction.
Let us take the first reaction:
${{k}_{1}}=\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$
${{T}_{1}}=407K$
So, putting all the values in the equation, we get
$\log 9.5\text{ x 1}{{\text{0}}^{-5}}=\log A-\dfrac{75782.3}{2.303\text{ x 8}\text{.314 x 407}}$
$\log \dfrac{A}{9.5\text{ x 1}{{\text{0}}^{-5}}}=\dfrac{75782.3}{2.303\text{ x 8}\text{.314 x 407}}=9.7246$
A = antilog (9.7246)
$A=5.04\text{ x 1}{{\text{0}}^{5}}{{s}^{-1}}$
So, the value of frequency factor is $5.04\text{ x 1}{{\text{0}}^{5}}{{s}^{-1}}$ .
Note: To find the frequency factor it is not necessary to apply the equation on the first reaction, we can put the values of any reaction in the formula. The Arrhenius equation tells the effect of temperature on the rate of reaction.
Complete answer:
According to the question,
Rate constant of the first reaction is $\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$at 407 K.
So,
${{k}_{1}}=\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$
${{T}_{1}}=407K$
Rate constant of the second reaction is $\text{1}\text{.9 x 1}{{\text{0}}^{-4}}\text{ }{{\text{s}}^{-1}}$ at 420 K
So,
${{k}_{2}}=\text{1}\text{.9 x 1}{{\text{0}}^{-4}}\text{ }{{\text{s}}^{-1}}$
${{T}_{2}}=420K$
The value of gas constant is taken in the SI unit. The value of R = 8.314 $Jmo{{l}^{-1}}{{K}^{-1}}$
So, with all these factors we can calculate the value of activation energy.
The activation energy is calculated with the formula = $\log \dfrac{{{k}_{2}}}{{{k}_{1}}}=\dfrac{{{E}_{a}}}{2.303R}\left[ \dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}{{T}_{1}}} \right]$
So, putting all the values, we get
$\log \frac{1.9\text{ x 1}{{\text{0}}^{-4}}}{9.5\text{ x 1}{{\text{0}}^{-5}}}=\dfrac{{{E}_{a}}}{2.303\text{ x 8}\text{.314}}\left[ \dfrac{420-407}{420\text{ x 407}} \right]$
${{E}_{a}}=75782.3Jmo{{l}^{-1}}$
So, the value of activation energy is 757582.3 joule per mole
Since, we know the value of activation energy is calculated, now, the value of frequency factor can be calculated easily.
According to the Arrhenius equation,
$k=A{{e}^{-{{E}_{a}}/RT}}$
The logarithm form of this equation will be,
$\log k=\log A-\dfrac{{{E}_{a}}}{2.303RT}$
Since, we have two reactions, we can put the value of any reaction.
Let us take the first reaction:
${{k}_{1}}=\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$
${{T}_{1}}=407K$
So, putting all the values in the equation, we get
$\log 9.5\text{ x 1}{{\text{0}}^{-5}}=\log A-\dfrac{75782.3}{2.303\text{ x 8}\text{.314 x 407}}$
$\log \dfrac{A}{9.5\text{ x 1}{{\text{0}}^{-5}}}=\dfrac{75782.3}{2.303\text{ x 8}\text{.314 x 407}}=9.7246$
A = antilog (9.7246)
$A=5.04\text{ x 1}{{\text{0}}^{5}}{{s}^{-1}}$
So, the value of frequency factor is $5.04\text{ x 1}{{\text{0}}^{5}}{{s}^{-1}}$ .
Note: To find the frequency factor it is not necessary to apply the equation on the first reaction, we can put the values of any reaction in the formula. The Arrhenius equation tells the effect of temperature on the rate of reaction.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

