Answer
Verified
446.1k+ views
Hint: The equation called Arrhenius equation is usually written as $k=A{{e}^{-{{E}_{a}}/RT}}$ where the pre-exponential factor A is a constant and is called frequency factor and ${{E}_{a}}$ is called the activation energy, R is the gas constant and T is the temperature. The activation energy is calculated by the formula $\log \dfrac{{{k}_{2}}}{{{k}_{1}}}=\dfrac{{{E}_{a}}}{2.303R}\left[ \dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}{{T}_{1}}} \right]$ where ${{k}_{1}}\text{ and }{{k}_{2}}$ are rate constants at different temperatures.
Complete answer:
According to the question,
Rate constant of the first reaction is $\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$at 407 K.
So,
${{k}_{1}}=\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$
${{T}_{1}}=407K$
Rate constant of the second reaction is $\text{1}\text{.9 x 1}{{\text{0}}^{-4}}\text{ }{{\text{s}}^{-1}}$ at 420 K
So,
${{k}_{2}}=\text{1}\text{.9 x 1}{{\text{0}}^{-4}}\text{ }{{\text{s}}^{-1}}$
${{T}_{2}}=420K$
The value of gas constant is taken in the SI unit. The value of R = 8.314 $Jmo{{l}^{-1}}{{K}^{-1}}$
So, with all these factors we can calculate the value of activation energy.
The activation energy is calculated with the formula = $\log \dfrac{{{k}_{2}}}{{{k}_{1}}}=\dfrac{{{E}_{a}}}{2.303R}\left[ \dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}{{T}_{1}}} \right]$
So, putting all the values, we get
$\log \frac{1.9\text{ x 1}{{\text{0}}^{-4}}}{9.5\text{ x 1}{{\text{0}}^{-5}}}=\dfrac{{{E}_{a}}}{2.303\text{ x 8}\text{.314}}\left[ \dfrac{420-407}{420\text{ x 407}} \right]$
${{E}_{a}}=75782.3Jmo{{l}^{-1}}$
So, the value of activation energy is 757582.3 joule per mole
Since, we know the value of activation energy is calculated, now, the value of frequency factor can be calculated easily.
According to the Arrhenius equation,
$k=A{{e}^{-{{E}_{a}}/RT}}$
The logarithm form of this equation will be,
$\log k=\log A-\dfrac{{{E}_{a}}}{2.303RT}$
Since, we have two reactions, we can put the value of any reaction.
Let us take the first reaction:
${{k}_{1}}=\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$
${{T}_{1}}=407K$
So, putting all the values in the equation, we get
$\log 9.5\text{ x 1}{{\text{0}}^{-5}}=\log A-\dfrac{75782.3}{2.303\text{ x 8}\text{.314 x 407}}$
$\log \dfrac{A}{9.5\text{ x 1}{{\text{0}}^{-5}}}=\dfrac{75782.3}{2.303\text{ x 8}\text{.314 x 407}}=9.7246$
A = antilog (9.7246)
$A=5.04\text{ x 1}{{\text{0}}^{5}}{{s}^{-1}}$
So, the value of frequency factor is $5.04\text{ x 1}{{\text{0}}^{5}}{{s}^{-1}}$ .
Note: To find the frequency factor it is not necessary to apply the equation on the first reaction, we can put the values of any reaction in the formula. The Arrhenius equation tells the effect of temperature on the rate of reaction.
Complete answer:
According to the question,
Rate constant of the first reaction is $\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$at 407 K.
So,
${{k}_{1}}=\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$
${{T}_{1}}=407K$
Rate constant of the second reaction is $\text{1}\text{.9 x 1}{{\text{0}}^{-4}}\text{ }{{\text{s}}^{-1}}$ at 420 K
So,
${{k}_{2}}=\text{1}\text{.9 x 1}{{\text{0}}^{-4}}\text{ }{{\text{s}}^{-1}}$
${{T}_{2}}=420K$
The value of gas constant is taken in the SI unit. The value of R = 8.314 $Jmo{{l}^{-1}}{{K}^{-1}}$
So, with all these factors we can calculate the value of activation energy.
The activation energy is calculated with the formula = $\log \dfrac{{{k}_{2}}}{{{k}_{1}}}=\dfrac{{{E}_{a}}}{2.303R}\left[ \dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}{{T}_{1}}} \right]$
So, putting all the values, we get
$\log \frac{1.9\text{ x 1}{{\text{0}}^{-4}}}{9.5\text{ x 1}{{\text{0}}^{-5}}}=\dfrac{{{E}_{a}}}{2.303\text{ x 8}\text{.314}}\left[ \dfrac{420-407}{420\text{ x 407}} \right]$
${{E}_{a}}=75782.3Jmo{{l}^{-1}}$
So, the value of activation energy is 757582.3 joule per mole
Since, we know the value of activation energy is calculated, now, the value of frequency factor can be calculated easily.
According to the Arrhenius equation,
$k=A{{e}^{-{{E}_{a}}/RT}}$
The logarithm form of this equation will be,
$\log k=\log A-\dfrac{{{E}_{a}}}{2.303RT}$
Since, we have two reactions, we can put the value of any reaction.
Let us take the first reaction:
${{k}_{1}}=\text{9}\text{.5 x 1}{{\text{0}}^{-5}}\text{ }{{\text{s}}^{-1}}$
${{T}_{1}}=407K$
So, putting all the values in the equation, we get
$\log 9.5\text{ x 1}{{\text{0}}^{-5}}=\log A-\dfrac{75782.3}{2.303\text{ x 8}\text{.314 x 407}}$
$\log \dfrac{A}{9.5\text{ x 1}{{\text{0}}^{-5}}}=\dfrac{75782.3}{2.303\text{ x 8}\text{.314 x 407}}=9.7246$
A = antilog (9.7246)
$A=5.04\text{ x 1}{{\text{0}}^{5}}{{s}^{-1}}$
So, the value of frequency factor is $5.04\text{ x 1}{{\text{0}}^{5}}{{s}^{-1}}$ .
Note: To find the frequency factor it is not necessary to apply the equation on the first reaction, we can put the values of any reaction in the formula. The Arrhenius equation tells the effect of temperature on the rate of reaction.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Casparian strips are present in of the root A Epiblema class 12 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE