
At $\text{2}{{\text{5}}^{\text{o}}}\text{C}$, the dissociation constant of a base, BOH is $1.0\times {{10}^{-12}}$. The concentration of hydroxyl ions in 0.01 M aqueous solution of the base would be:
(A) $\text{2}\text{.0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-6}}}\text{mol}{{\text{L}}^{\text{-1}}}$
(B) $\text{1}\text{.0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-5}}}\text{mol}{{\text{L}}^{\text{-1}}}$
(C) $\text{1}\text{.0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-6}}}\text{mol}{{\text{L}}^{\text{-1}}}$
(D) $\text{1}\text{.0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-7}}}\text{mol}{{\text{L}}^{\text{-1}}}$
Answer
547.8k+ views
Hint: Write down the dissociation of the base in water. Find the equilibrium constant for the dissociation process with the degree of dissociation. The formula for equilibrium constant is given below. ${{K}_{b}}$ will be equal to the equilibrium constant calculated.
Formula: ${{\text{K}}_{c}}\text{=}\dfrac{\text{Concentration of products}}{\text{Concentration of reactants}}$
Complete step by step answer:
- Let us write down the dissociation of a monoacidic base say BOH,
\[BOH\xrightarrow{reversible}\text{ }{{B}^{+}}+O{{H}^{-}}\]
- From the above dissociation we will now calculate the equilibrium constant for the reaction.
\[\begin{align}
& \underset{\text{Initial concentration}:\text{ }}{\mathop{{}}}\,\text{ }\underset{\text{c}}{\mathop{\text{BOH}}}\,\text{ }\xrightarrow{\text{reversible}}\text{ }\underset{0}{\mathop{{{\text{B}}^{\text{+}}}}}\,\text{ + }\underset{0}{\mathop{\text{O}{{\text{H}}^{-}}}}\, \\
& \underset{\text{Final concentration}:\text{ }}{\mathop{{}}}\,\text{ }\underset{\text{c(1-}\alpha \text{)}}{\mathop{\text{BOH}}}\,\text{ }\xrightarrow{\text{reversible}}\text{ }\underset{c\alpha }{\mathop{{{\text{B}}^{\text{+}}}}}\,\text{ + }\underset{c\alpha }{\mathop{\text{O}{{\text{H}}^{-}}}}\, \\
& \\
\end{align}\]
Where,
$\alpha $ stands for a degree of dissociation.
- We will now substitute the values in the above formula,
\[\begin{align}
& {{\text{K}}_{b}}\text{=}\frac{\text{Concentration of products}}{\text{Concentration of reactants}} \\
& {{\text{K}}_{b}}\text{=}\frac{(0.1\alpha )(0.1\alpha )}{0.1(1-\alpha )} \\
\end{align}\]
- The value of ${{K}_{b}}$ is given as $1.0\times {{10}^{-12}}$ and the molarity of solution (c) is 0.01 M. Substituting the values in the equation we get,
\[\begin{align}
& \left[ \text{O}{{\text{H}}^{\text{-}}} \right]\text{=c }\!\!\alpha\!\!\text{ } \\
& \left[ O{{H}^{-}} \right]=\sqrt{{{K}_{b}}C}=\sqrt{1\times {{10}^{-12}}\times {{10}^{-2}}} \\
& =\sqrt{{{K}_{b}}C}=\sqrt{1\times {{10}^{-12}}\times {{10}^{-2}}} \\
& \left[ \text{O}{{\text{H}}^{\text{-}}} \right]\text{=1}{{\text{0}}^{\text{-7}}}\text{mol}{{\text{L}}^{\text{-1}}} \\
\end{align}\] The correct answer is option “D” .
Additional Information :
- Chemical equilibrium refers to the state of a system in which the concentration of the reactant and the concentration of the products do not change with time and the system does not display any further change in properties.
- When the rate of forward reaction is equal to the rate of the reverse reaction, the state of chemical equilibrium is achieved by the system. When there is no further change in the concentrations of the reactants and the products due to the equal rates of the forward and backward reactions, the system is said to be in a state of dynamic equilibrium.
Note: In the above calculation we have ignored the value$(1-\alpha )$ in the denominator. This is because the value of $\alpha \ll 1$. Here $\alpha $ is used to denote the degree of dissociation.
Formula: ${{\text{K}}_{c}}\text{=}\dfrac{\text{Concentration of products}}{\text{Concentration of reactants}}$
Complete step by step answer:
- Let us write down the dissociation of a monoacidic base say BOH,
\[BOH\xrightarrow{reversible}\text{ }{{B}^{+}}+O{{H}^{-}}\]
- From the above dissociation we will now calculate the equilibrium constant for the reaction.
\[\begin{align}
& \underset{\text{Initial concentration}:\text{ }}{\mathop{{}}}\,\text{ }\underset{\text{c}}{\mathop{\text{BOH}}}\,\text{ }\xrightarrow{\text{reversible}}\text{ }\underset{0}{\mathop{{{\text{B}}^{\text{+}}}}}\,\text{ + }\underset{0}{\mathop{\text{O}{{\text{H}}^{-}}}}\, \\
& \underset{\text{Final concentration}:\text{ }}{\mathop{{}}}\,\text{ }\underset{\text{c(1-}\alpha \text{)}}{\mathop{\text{BOH}}}\,\text{ }\xrightarrow{\text{reversible}}\text{ }\underset{c\alpha }{\mathop{{{\text{B}}^{\text{+}}}}}\,\text{ + }\underset{c\alpha }{\mathop{\text{O}{{\text{H}}^{-}}}}\, \\
& \\
\end{align}\]
Where,
$\alpha $ stands for a degree of dissociation.
- We will now substitute the values in the above formula,
\[\begin{align}
& {{\text{K}}_{b}}\text{=}\frac{\text{Concentration of products}}{\text{Concentration of reactants}} \\
& {{\text{K}}_{b}}\text{=}\frac{(0.1\alpha )(0.1\alpha )}{0.1(1-\alpha )} \\
\end{align}\]
- The value of ${{K}_{b}}$ is given as $1.0\times {{10}^{-12}}$ and the molarity of solution (c) is 0.01 M. Substituting the values in the equation we get,
\[\begin{align}
& \left[ \text{O}{{\text{H}}^{\text{-}}} \right]\text{=c }\!\!\alpha\!\!\text{ } \\
& \left[ O{{H}^{-}} \right]=\sqrt{{{K}_{b}}C}=\sqrt{1\times {{10}^{-12}}\times {{10}^{-2}}} \\
& =\sqrt{{{K}_{b}}C}=\sqrt{1\times {{10}^{-12}}\times {{10}^{-2}}} \\
& \left[ \text{O}{{\text{H}}^{\text{-}}} \right]\text{=1}{{\text{0}}^{\text{-7}}}\text{mol}{{\text{L}}^{\text{-1}}} \\
\end{align}\] The correct answer is option “D” .
Additional Information :
- Chemical equilibrium refers to the state of a system in which the concentration of the reactant and the concentration of the products do not change with time and the system does not display any further change in properties.
- When the rate of forward reaction is equal to the rate of the reverse reaction, the state of chemical equilibrium is achieved by the system. When there is no further change in the concentrations of the reactants and the products due to the equal rates of the forward and backward reactions, the system is said to be in a state of dynamic equilibrium.
Note: In the above calculation we have ignored the value$(1-\alpha )$ in the denominator. This is because the value of $\alpha \ll 1$. Here $\alpha $ is used to denote the degree of dissociation.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

