
Assuming the derivatives of \[\sinh x\] and \[\cosh x\], use the quotient rule to prove that is,
\[y=\tanh x=\dfrac{\sinh x}{\cosh x}\], then \[\dfrac{dy}{dx}={{\operatorname{sech}}^{2}}x\].
Answer
585.3k+ views
Hint: Write the hyperbolic value of \[\sinh x\] and \[\cosh x\]. Find the value of y by substituting the value of \[\sinh x\] and \[\cosh x\]. Find its derivative using quotient rule of differentiation given by, \[\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}\] and \[\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\].
Complete step by step solution:
The hyperbolic sine and hyperbolic cosine functions are given as, \[\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}\] and \[\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\].
We have been given that, \[y=\tanh x=\dfrac{\sinh x}{\cosh x}\].
Now substitute the value of \[\sinh x\] and \[\cosh x\] in the above expression.
\[y=\tanh x=\dfrac{\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}}{\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}}\]
Let us cancel out the common denominator 2 from the above expression.
\[\therefore y=\tanh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}}\]
Let us take, \[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}} \right]\]
Hence let us solve using the quotient rule which is given as,
\[d\left[ \dfrac{f\left( x \right)}{g\left( x \right)} \right]=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{\left( g\left( x \right) \right)}^{2}}}\]
Here, \[f\left( x \right)={{e}^{x}}-{{e}^{-x}}\] and \[g\left( x \right)={{e}^{x}}+{{e}^{-x}}\]
\[\begin{align}
& \therefore f'\left( x \right)={{e}^{x}}-\left( -1 \right){{e}^{-x}}={{e}^{x}}+{{e}^{-x}} \\
& g'\left( x \right)={{e}^{x}}+\left( -1 \right){{e}^{-x}}={{e}^{x}}-{{e}^{-x}} \\
\end{align}\]
Let us substitute these values in the formula of the quotient rule.
\[\dfrac{dy}{dx}=\dfrac{\left( {{e}^{x}}+{{e}^{-x}} \right)\left( {{e}^{x}}+{{e}^{-x}} \right)-\left( {{e}^{x}}-{{e}^{-x}} \right)\left( {{e}^{x}}-{{e}^{-x}} \right)}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}\]
Let us open brackets and simplify it,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{\left[ {{e}^{2x}}+{{e}^{x-x}}+{{e}^{x-x}}+{{e}^{-2x}} \right]-\left[ {{e}^{2x}}-{{e}^{x-x}}-{{e}^{x-x}}+{{e}^{-2x}} \right]}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{{{e}^{2x}}+{{e}^{0}}+{{e}^{0}}+{{e}^{-2x}}-{{e}^{-2x}}+{{e}^{0}}+{{e}^{0}}-{{e}^{-2x}}}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}=\dfrac{4{{e}^{0}}}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}} \\
\end{align}\]
We know that, \[{{e}^{0}}=1\].
\[\therefore \dfrac{dy}{dx}=\dfrac{4}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}\] - (1)
We know that, \[\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\]
\[\therefore {{\cos }^{2}}hx={{\left[ \dfrac{\left( {{e}^{x}}+{{e}^{-x}} \right)}{2} \right]}^{2}}=\dfrac{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}{4}\]
We know that, \[\operatorname{sech}x=\dfrac{1}{\cosh x}\].
\[\therefore {{\sec }^{2}}hx=\dfrac{1}{{{\cos }^{2}}hx}=\dfrac{1}{\dfrac{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}{4}}=\dfrac{4}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}\]
\[\therefore {{\sec }^{2}}hx=\dfrac{4}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}\] - (2)
Comparing (1) and (2) we can say that,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{4}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}={{\sec }^{2}}hx \\
& \therefore \dfrac{dy}{dx}={{\sec }^{2}}hx \\
\end{align}\]
Hence we proved the required.
Note: The derivative of \[\tan x\] is \[{{\sec }^{2}}x\]. Thus the derivative of \[\tanh x\] is equal to \[{{\operatorname{sech}}^{2}}x\].
\[\dfrac{d}{dx}\tan x={{\sec }^{2}}x\]
\[\dfrac{d}{dx}\tanh x={{\sec }^{2}}hx\]
There are lots of terms involved while applying the quotient rule and care must be taken during its simplification. Any mistake will lead to loss time as we will not be able to prove the results and leave the question as it is.
Complete step by step solution:
The hyperbolic sine and hyperbolic cosine functions are given as, \[\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}\] and \[\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\].
We have been given that, \[y=\tanh x=\dfrac{\sinh x}{\cosh x}\].
Now substitute the value of \[\sinh x\] and \[\cosh x\] in the above expression.
\[y=\tanh x=\dfrac{\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}}{\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}}\]
Let us cancel out the common denominator 2 from the above expression.
\[\therefore y=\tanh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}}\]
Let us take, \[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}} \right]\]
Hence let us solve using the quotient rule which is given as,
\[d\left[ \dfrac{f\left( x \right)}{g\left( x \right)} \right]=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{\left( g\left( x \right) \right)}^{2}}}\]
Here, \[f\left( x \right)={{e}^{x}}-{{e}^{-x}}\] and \[g\left( x \right)={{e}^{x}}+{{e}^{-x}}\]
\[\begin{align}
& \therefore f'\left( x \right)={{e}^{x}}-\left( -1 \right){{e}^{-x}}={{e}^{x}}+{{e}^{-x}} \\
& g'\left( x \right)={{e}^{x}}+\left( -1 \right){{e}^{-x}}={{e}^{x}}-{{e}^{-x}} \\
\end{align}\]
Let us substitute these values in the formula of the quotient rule.
\[\dfrac{dy}{dx}=\dfrac{\left( {{e}^{x}}+{{e}^{-x}} \right)\left( {{e}^{x}}+{{e}^{-x}} \right)-\left( {{e}^{x}}-{{e}^{-x}} \right)\left( {{e}^{x}}-{{e}^{-x}} \right)}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}\]
Let us open brackets and simplify it,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{\left[ {{e}^{2x}}+{{e}^{x-x}}+{{e}^{x-x}}+{{e}^{-2x}} \right]-\left[ {{e}^{2x}}-{{e}^{x-x}}-{{e}^{x-x}}+{{e}^{-2x}} \right]}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{{{e}^{2x}}+{{e}^{0}}+{{e}^{0}}+{{e}^{-2x}}-{{e}^{-2x}}+{{e}^{0}}+{{e}^{0}}-{{e}^{-2x}}}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}=\dfrac{4{{e}^{0}}}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}} \\
\end{align}\]
We know that, \[{{e}^{0}}=1\].
\[\therefore \dfrac{dy}{dx}=\dfrac{4}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}\] - (1)
We know that, \[\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\]
\[\therefore {{\cos }^{2}}hx={{\left[ \dfrac{\left( {{e}^{x}}+{{e}^{-x}} \right)}{2} \right]}^{2}}=\dfrac{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}{4}\]
We know that, \[\operatorname{sech}x=\dfrac{1}{\cosh x}\].
\[\therefore {{\sec }^{2}}hx=\dfrac{1}{{{\cos }^{2}}hx}=\dfrac{1}{\dfrac{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}{4}}=\dfrac{4}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}\]
\[\therefore {{\sec }^{2}}hx=\dfrac{4}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}\] - (2)
Comparing (1) and (2) we can say that,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{4}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}={{\sec }^{2}}hx \\
& \therefore \dfrac{dy}{dx}={{\sec }^{2}}hx \\
\end{align}\]
Hence we proved the required.
Note: The derivative of \[\tan x\] is \[{{\sec }^{2}}x\]. Thus the derivative of \[\tanh x\] is equal to \[{{\operatorname{sech}}^{2}}x\].
\[\dfrac{d}{dx}\tan x={{\sec }^{2}}x\]
\[\dfrac{d}{dx}\tanh x={{\sec }^{2}}hx\]
There are lots of terms involved while applying the quotient rule and care must be taken during its simplification. Any mistake will lead to loss time as we will not be able to prove the results and leave the question as it is.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

