
Assuming the derivatives of \[\sinh x\] and \[\cosh x\], use the quotient rule to prove that is,
\[y=\tanh x=\dfrac{\sinh x}{\cosh x}\], then \[\dfrac{dy}{dx}={{\operatorname{sech}}^{2}}x\].
Answer
598.2k+ views
Hint: Write the hyperbolic value of \[\sinh x\] and \[\cosh x\]. Find the value of y by substituting the value of \[\sinh x\] and \[\cosh x\]. Find its derivative using quotient rule of differentiation given by, \[\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}\] and \[\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\].
Complete step by step solution:
The hyperbolic sine and hyperbolic cosine functions are given as, \[\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}\] and \[\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\].
We have been given that, \[y=\tanh x=\dfrac{\sinh x}{\cosh x}\].
Now substitute the value of \[\sinh x\] and \[\cosh x\] in the above expression.
\[y=\tanh x=\dfrac{\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}}{\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}}\]
Let us cancel out the common denominator 2 from the above expression.
\[\therefore y=\tanh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}}\]
Let us take, \[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}} \right]\]
Hence let us solve using the quotient rule which is given as,
\[d\left[ \dfrac{f\left( x \right)}{g\left( x \right)} \right]=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{\left( g\left( x \right) \right)}^{2}}}\]
Here, \[f\left( x \right)={{e}^{x}}-{{e}^{-x}}\] and \[g\left( x \right)={{e}^{x}}+{{e}^{-x}}\]
\[\begin{align}
& \therefore f'\left( x \right)={{e}^{x}}-\left( -1 \right){{e}^{-x}}={{e}^{x}}+{{e}^{-x}} \\
& g'\left( x \right)={{e}^{x}}+\left( -1 \right){{e}^{-x}}={{e}^{x}}-{{e}^{-x}} \\
\end{align}\]
Let us substitute these values in the formula of the quotient rule.
\[\dfrac{dy}{dx}=\dfrac{\left( {{e}^{x}}+{{e}^{-x}} \right)\left( {{e}^{x}}+{{e}^{-x}} \right)-\left( {{e}^{x}}-{{e}^{-x}} \right)\left( {{e}^{x}}-{{e}^{-x}} \right)}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}\]
Let us open brackets and simplify it,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{\left[ {{e}^{2x}}+{{e}^{x-x}}+{{e}^{x-x}}+{{e}^{-2x}} \right]-\left[ {{e}^{2x}}-{{e}^{x-x}}-{{e}^{x-x}}+{{e}^{-2x}} \right]}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{{{e}^{2x}}+{{e}^{0}}+{{e}^{0}}+{{e}^{-2x}}-{{e}^{-2x}}+{{e}^{0}}+{{e}^{0}}-{{e}^{-2x}}}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}=\dfrac{4{{e}^{0}}}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}} \\
\end{align}\]
We know that, \[{{e}^{0}}=1\].
\[\therefore \dfrac{dy}{dx}=\dfrac{4}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}\] - (1)
We know that, \[\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\]
\[\therefore {{\cos }^{2}}hx={{\left[ \dfrac{\left( {{e}^{x}}+{{e}^{-x}} \right)}{2} \right]}^{2}}=\dfrac{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}{4}\]
We know that, \[\operatorname{sech}x=\dfrac{1}{\cosh x}\].
\[\therefore {{\sec }^{2}}hx=\dfrac{1}{{{\cos }^{2}}hx}=\dfrac{1}{\dfrac{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}{4}}=\dfrac{4}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}\]
\[\therefore {{\sec }^{2}}hx=\dfrac{4}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}\] - (2)
Comparing (1) and (2) we can say that,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{4}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}={{\sec }^{2}}hx \\
& \therefore \dfrac{dy}{dx}={{\sec }^{2}}hx \\
\end{align}\]
Hence we proved the required.
Note: The derivative of \[\tan x\] is \[{{\sec }^{2}}x\]. Thus the derivative of \[\tanh x\] is equal to \[{{\operatorname{sech}}^{2}}x\].
\[\dfrac{d}{dx}\tan x={{\sec }^{2}}x\]
\[\dfrac{d}{dx}\tanh x={{\sec }^{2}}hx\]
There are lots of terms involved while applying the quotient rule and care must be taken during its simplification. Any mistake will lead to loss time as we will not be able to prove the results and leave the question as it is.
Complete step by step solution:
The hyperbolic sine and hyperbolic cosine functions are given as, \[\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}\] and \[\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\].
We have been given that, \[y=\tanh x=\dfrac{\sinh x}{\cosh x}\].
Now substitute the value of \[\sinh x\] and \[\cosh x\] in the above expression.
\[y=\tanh x=\dfrac{\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}}{\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}}\]
Let us cancel out the common denominator 2 from the above expression.
\[\therefore y=\tanh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}}\]
Let us take, \[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \dfrac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}} \right]\]
Hence let us solve using the quotient rule which is given as,
\[d\left[ \dfrac{f\left( x \right)}{g\left( x \right)} \right]=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{\left( g\left( x \right) \right)}^{2}}}\]
Here, \[f\left( x \right)={{e}^{x}}-{{e}^{-x}}\] and \[g\left( x \right)={{e}^{x}}+{{e}^{-x}}\]
\[\begin{align}
& \therefore f'\left( x \right)={{e}^{x}}-\left( -1 \right){{e}^{-x}}={{e}^{x}}+{{e}^{-x}} \\
& g'\left( x \right)={{e}^{x}}+\left( -1 \right){{e}^{-x}}={{e}^{x}}-{{e}^{-x}} \\
\end{align}\]
Let us substitute these values in the formula of the quotient rule.
\[\dfrac{dy}{dx}=\dfrac{\left( {{e}^{x}}+{{e}^{-x}} \right)\left( {{e}^{x}}+{{e}^{-x}} \right)-\left( {{e}^{x}}-{{e}^{-x}} \right)\left( {{e}^{x}}-{{e}^{-x}} \right)}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}\]
Let us open brackets and simplify it,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{\left[ {{e}^{2x}}+{{e}^{x-x}}+{{e}^{x-x}}+{{e}^{-2x}} \right]-\left[ {{e}^{2x}}-{{e}^{x-x}}-{{e}^{x-x}}+{{e}^{-2x}} \right]}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}} \\
& \dfrac{dy}{dx}=\dfrac{{{e}^{2x}}+{{e}^{0}}+{{e}^{0}}+{{e}^{-2x}}-{{e}^{-2x}}+{{e}^{0}}+{{e}^{0}}-{{e}^{-2x}}}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}=\dfrac{4{{e}^{0}}}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}} \\
\end{align}\]
We know that, \[{{e}^{0}}=1\].
\[\therefore \dfrac{dy}{dx}=\dfrac{4}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}\] - (1)
We know that, \[\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\]
\[\therefore {{\cos }^{2}}hx={{\left[ \dfrac{\left( {{e}^{x}}+{{e}^{-x}} \right)}{2} \right]}^{2}}=\dfrac{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}{4}\]
We know that, \[\operatorname{sech}x=\dfrac{1}{\cosh x}\].
\[\therefore {{\sec }^{2}}hx=\dfrac{1}{{{\cos }^{2}}hx}=\dfrac{1}{\dfrac{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}{4}}=\dfrac{4}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}\]
\[\therefore {{\sec }^{2}}hx=\dfrac{4}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}\] - (2)
Comparing (1) and (2) we can say that,
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{4}{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}}={{\sec }^{2}}hx \\
& \therefore \dfrac{dy}{dx}={{\sec }^{2}}hx \\
\end{align}\]
Hence we proved the required.
Note: The derivative of \[\tan x\] is \[{{\sec }^{2}}x\]. Thus the derivative of \[\tanh x\] is equal to \[{{\operatorname{sech}}^{2}}x\].
\[\dfrac{d}{dx}\tan x={{\sec }^{2}}x\]
\[\dfrac{d}{dx}\tanh x={{\sec }^{2}}hx\]
There are lots of terms involved while applying the quotient rule and care must be taken during its simplification. Any mistake will lead to loss time as we will not be able to prove the results and leave the question as it is.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

