
As part of ‘Earth Day’ celebrations, an inter-class poster making competition was arranged between nine sections of class VIII. Each section was provided sheet measuring \[75cm\times 40cm\] for making the poster. Find the total area of the sheet provided to the students. Express the area in exponential form.
Answer
599.7k+ views
Hint: As we know that the area of a rectangular sheet is given as follows:
Area \[=l\times b\] where l is the length of the sheet and b is the breadth of the sheet. Then we will multiply this area with the number of sections.
Complete step-by-step answer:
We have been given the sheet measuring \[75cm\times 40cm\] for making the poster.
As we know that area \[=l\times b\] where l is the length of the sheet and b is the breadth of the sheet. Then we will multiply this area with the number of sections.
We have l = 75 cm and b = 40 cm.
So, area \[=l\times b=75\times 40=3000c{{m}^{2}}\].
Hence the area of one sheet that has been provided to each section is equal to \[3000c{{m}^{2}}\].
Since it is given that there are a total nine sections of the class and each section is provided with the same sheet.
So, total area of sheet \[=9\times 3000=27000c{{m}^{2}}=2.7\times 10000=2.7\times {{10}^{4}}c{{m}^{2}}\].
Therefore, the total area of the sheet that has been provided to the students is equal to \[2.7\times {{10}^{4}}c{{m}^{2}}\].
Note: After we get the answer, don’t forget to change it in the exponential form and be extremely careful while changing it. Also, take care of the unit of the area.
Area \[=l\times b\] where l is the length of the sheet and b is the breadth of the sheet. Then we will multiply this area with the number of sections.
Complete step-by-step answer:
We have been given the sheet measuring \[75cm\times 40cm\] for making the poster.
As we know that area \[=l\times b\] where l is the length of the sheet and b is the breadth of the sheet. Then we will multiply this area with the number of sections.
We have l = 75 cm and b = 40 cm.
So, area \[=l\times b=75\times 40=3000c{{m}^{2}}\].
Hence the area of one sheet that has been provided to each section is equal to \[3000c{{m}^{2}}\].
Since it is given that there are a total nine sections of the class and each section is provided with the same sheet.
So, total area of sheet \[=9\times 3000=27000c{{m}^{2}}=2.7\times 10000=2.7\times {{10}^{4}}c{{m}^{2}}\].
Therefore, the total area of the sheet that has been provided to the students is equal to \[2.7\times {{10}^{4}}c{{m}^{2}}\].
Note: After we get the answer, don’t forget to change it in the exponential form and be extremely careful while changing it. Also, take care of the unit of the area.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE


