
Arrange the hyperbolic functions in ascending order $ A = \sinh 0 $ , $ B = \operatorname{Cosh} 0 $ and $ C = \operatorname{Sech} 0 $
A. $ A,B,C $
B. $ A,C,B $
C. $ B,C,A $
D. $ B,A,C $
Answer
589.2k+ views
Hint: The hyperbolic functions have to be written in terms of exponential functions and the value is to be compared at $ x = {0^o} $
Complete step-by-step answer:
The first function is $ A = \sinh 0 $
The formula for $ \sinh x $ in terms of exponential function is,
$ \sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2} $
Substituting $ x = 0 $ in equation (1),
$
\sinh 0 = \dfrac{{{e^0} - {e^{ - 0}}}}{2} \\
\sinh 0 = \dfrac{{1 - 1}}{2} \\
\sinh 0 = 0 \\
$
The value of $ A = 0 \cdots \left( 1 \right) $
The second function is $ B = \cosh 0 $
The formula for in terms of exponential function is,
$ \cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2} $
Substituting in equation (2),
$
\cosh 0 = \dfrac{{{e^0} + {e^{ - 0}}}}{2} \\
\cosh 0 = \dfrac{{1 + 1}}{2} \\
\cosh 0 = 1 \\
$
The value of $ B = 1 \cdots \left( 2 \right) $
The third function is $ C = \operatorname{sech} 0 $
The formula for $ \operatorname{sech} x $ in terms of exponential function is,
$
\operatorname{sech} x = \dfrac{1}{{\cosh x}} \\
\operatorname{sech} x = \dfrac{2}{{{e^x} + {e^{ - x}}}} \\
$
Substituting $ x = 0 $ in equation (3),
$
\operatorname{sech} 0 = \dfrac{2}{{{e^0} + {e^{ - 0}}}} \\
\operatorname{sech} 0 = \dfrac{2}{2} \\
\operatorname{sech} 0 = 1 \\
$
The value of $ C = 1 \cdots \left( 3 \right) $
From equation (1), (2) and (3), the correct increasing order of the hyperbolic functions is
$ \sinh 0,\cosh 0 = \operatorname{sech} 0 $ Or $ A,B = C $
But this option is not given.
Hence, none of the options is correct.
Note: Hyperbolic functions are very similar to the trigonometric functions but they are expressed in terms of exponential functions. The most common hyperbolic functions are $ \sinh x $ and $ \cosh x $ .
The formula for in terms of exponential function is , $ \cosh x $
$ \cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2} $
This function satisfies the $ \cosh 0 = 1 $ and $ \cosh x = \cosh \left( { - x} \right) $ .
The graph of the $ \cosh x $ is always above the graph of $ \dfrac{{{e^x}}}{2} $ and $ \dfrac{{{e^{ - x} \sinh x }}}{2} $
The formula for in terms of exponential function is ,
$ \sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2} $
This function satisfies the $ \sinh 0 = 0 $ and $ \sinh \left( { - x} \right) = - \sinh \left( x \right) $ .
The graph of the $ \sinh x $ is always between the graphs of $ \dfrac{{{e^x}}}{2} $ and $ \dfrac{{{e^{ - x}}}}{2} $ .
For the large values of $ x $ the graph of and $ \cosh x $ are closer to each other .
The value of $ \tanh x $ can be calculated by dividing the $ \sinh x $ by $ \cosh x $ as,
$
\tanh x = \dfrac{{\sinh x}}{{\cosh x}} \\
\tanh x = \dfrac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}} \\
$
The factor of $ 2 $ got cancelled in the numerator and denominator.
Complete step-by-step answer:
The first function is $ A = \sinh 0 $
The formula for $ \sinh x $ in terms of exponential function is,
$ \sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2} $
Substituting $ x = 0 $ in equation (1),
$
\sinh 0 = \dfrac{{{e^0} - {e^{ - 0}}}}{2} \\
\sinh 0 = \dfrac{{1 - 1}}{2} \\
\sinh 0 = 0 \\
$
The value of $ A = 0 \cdots \left( 1 \right) $
The second function is $ B = \cosh 0 $
The formula for in terms of exponential function is,
$ \cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2} $
Substituting in equation (2),
$
\cosh 0 = \dfrac{{{e^0} + {e^{ - 0}}}}{2} \\
\cosh 0 = \dfrac{{1 + 1}}{2} \\
\cosh 0 = 1 \\
$
The value of $ B = 1 \cdots \left( 2 \right) $
The third function is $ C = \operatorname{sech} 0 $
The formula for $ \operatorname{sech} x $ in terms of exponential function is,
$
\operatorname{sech} x = \dfrac{1}{{\cosh x}} \\
\operatorname{sech} x = \dfrac{2}{{{e^x} + {e^{ - x}}}} \\
$
Substituting $ x = 0 $ in equation (3),
$
\operatorname{sech} 0 = \dfrac{2}{{{e^0} + {e^{ - 0}}}} \\
\operatorname{sech} 0 = \dfrac{2}{2} \\
\operatorname{sech} 0 = 1 \\
$
The value of $ C = 1 \cdots \left( 3 \right) $
From equation (1), (2) and (3), the correct increasing order of the hyperbolic functions is
$ \sinh 0,\cosh 0 = \operatorname{sech} 0 $ Or $ A,B = C $
But this option is not given.
Hence, none of the options is correct.
Note: Hyperbolic functions are very similar to the trigonometric functions but they are expressed in terms of exponential functions. The most common hyperbolic functions are $ \sinh x $ and $ \cosh x $ .
The formula for in terms of exponential function is , $ \cosh x $
$ \cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2} $
This function satisfies the $ \cosh 0 = 1 $ and $ \cosh x = \cosh \left( { - x} \right) $ .
The graph of the $ \cosh x $ is always above the graph of $ \dfrac{{{e^x}}}{2} $ and $ \dfrac{{{e^{ - x} \sinh x }}}{2} $
The formula for in terms of exponential function is ,
$ \sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2} $
This function satisfies the $ \sinh 0 = 0 $ and $ \sinh \left( { - x} \right) = - \sinh \left( x \right) $ .
The graph of the $ \sinh x $ is always between the graphs of $ \dfrac{{{e^x}}}{2} $ and $ \dfrac{{{e^{ - x}}}}{2} $ .
For the large values of $ x $ the graph of and $ \cosh x $ are closer to each other .
The value of $ \tanh x $ can be calculated by dividing the $ \sinh x $ by $ \cosh x $ as,
$
\tanh x = \dfrac{{\sinh x}}{{\cosh x}} \\
\tanh x = \dfrac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}} \\
$
The factor of $ 2 $ got cancelled in the numerator and denominator.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

