
Arrange the following fractions in ascending or descending order: \[\dfrac{4}{11},\dfrac{10}{15},\dfrac{6}{18},\dfrac{12}{22},\dfrac{15}{33}\].
Answer
594.3k+ views
Hint: Take LCM of the denominators of each of the given fractions. Suppose the LCM of the denominators is \[x\]. Divide \[x\] by the denominator of each fraction and multiply the numerator and denominator of the fraction by the value you get on dividing \[x\] by the denominator of the fraction. As the denominators of all the fractions are the same now, compare the numerators of the fractions and arrange them in ascending or descending order. Once you arrange the fractions in ascending or descending order, divide the numerator and denominator by the value you got on dividing \[x\] by the denominator.
Complete step-by-step answer:
We have the fractions \[\dfrac{4}{11},\dfrac{10}{15},\dfrac{6}{18},\dfrac{12}{22},\dfrac{15}{33}\]. We have to arrange them in ascending or descending order. We will do so by evaluating the LCM of the denominators of each of the fractions.
Thus, we have the numbers \[11,15,18,22,33\].
The LCM of numbers \[11,15,18,22,33\] is \[11\times 2\times 9\times 5=990\].
We can rewrite the fraction \[\dfrac{4}{11}\] as \[\dfrac{4}{11}=\dfrac{4\times 90}{11\times 90}=\dfrac{360}{990}\].
Similarly, we can rewrite the fraction \[\dfrac{10}{15}\] as \[\dfrac{10}{15}=\dfrac{10\times 66}{15\times 66}=\dfrac{660}{990}\].
We can rewrite the fraction \[\dfrac{6}{18}\] as \[\dfrac{6}{18}=\dfrac{6\times 55}{18\times 55}=\dfrac{330}{990}\].
We can rewrite the fraction \[\dfrac{12}{22}\] as \[\dfrac{12}{22}=\dfrac{12\times 45}{22\times 45}=\dfrac{540}{990}\].
We can rewrite the fraction \[\dfrac{15}{33}\] as \[\dfrac{15}{33}=\dfrac{15\times 30}{33\times 30}=\dfrac{450}{990}\].
Thus, we have the fractions \[\dfrac{4}{11},\dfrac{10}{15},\dfrac{6}{18},\dfrac{12}{22},\dfrac{15}{33}\] rewritten as \[\dfrac{360}{990},\dfrac{660}{990},\dfrac{330}{990},\dfrac{540}{990},\dfrac{450}{990}\].
Arranging these fractions in ascending order, we have \[\dfrac{330}{990}<\dfrac{360}{990}<\dfrac{450}{990}<\dfrac{540}{990}<\dfrac{660}{990}\].
Hence, the fractions arranged in ascending order are \[\dfrac{6}{18}<\dfrac{4}{11}<\dfrac{15}{33}<\dfrac{12}{22}<\dfrac{10}{15}\].
We can also arrange these fractions in descending order as \[\dfrac{10}{15}>\dfrac{12}{22}>\dfrac{15}{33}>\dfrac{4}{11}>\dfrac{6}{18}\].
Note: A fraction represents a part of a whole. Arranging the fractions in ascending order means arranging them in the increasing order of their value. While, arranging the fractions in descending order means arranging them in decreasing order of their values. Be careful while evaluating the LCM of the denominators as the LCM of any two numbers might not be the same as LCM of five numbers
Complete step-by-step answer:
We have the fractions \[\dfrac{4}{11},\dfrac{10}{15},\dfrac{6}{18},\dfrac{12}{22},\dfrac{15}{33}\]. We have to arrange them in ascending or descending order. We will do so by evaluating the LCM of the denominators of each of the fractions.
Thus, we have the numbers \[11,15,18,22,33\].
The LCM of numbers \[11,15,18,22,33\] is \[11\times 2\times 9\times 5=990\].
We can rewrite the fraction \[\dfrac{4}{11}\] as \[\dfrac{4}{11}=\dfrac{4\times 90}{11\times 90}=\dfrac{360}{990}\].
Similarly, we can rewrite the fraction \[\dfrac{10}{15}\] as \[\dfrac{10}{15}=\dfrac{10\times 66}{15\times 66}=\dfrac{660}{990}\].
We can rewrite the fraction \[\dfrac{6}{18}\] as \[\dfrac{6}{18}=\dfrac{6\times 55}{18\times 55}=\dfrac{330}{990}\].
We can rewrite the fraction \[\dfrac{12}{22}\] as \[\dfrac{12}{22}=\dfrac{12\times 45}{22\times 45}=\dfrac{540}{990}\].
We can rewrite the fraction \[\dfrac{15}{33}\] as \[\dfrac{15}{33}=\dfrac{15\times 30}{33\times 30}=\dfrac{450}{990}\].
Thus, we have the fractions \[\dfrac{4}{11},\dfrac{10}{15},\dfrac{6}{18},\dfrac{12}{22},\dfrac{15}{33}\] rewritten as \[\dfrac{360}{990},\dfrac{660}{990},\dfrac{330}{990},\dfrac{540}{990},\dfrac{450}{990}\].
Arranging these fractions in ascending order, we have \[\dfrac{330}{990}<\dfrac{360}{990}<\dfrac{450}{990}<\dfrac{540}{990}<\dfrac{660}{990}\].
Hence, the fractions arranged in ascending order are \[\dfrac{6}{18}<\dfrac{4}{11}<\dfrac{15}{33}<\dfrac{12}{22}<\dfrac{10}{15}\].
We can also arrange these fractions in descending order as \[\dfrac{10}{15}>\dfrac{12}{22}>\dfrac{15}{33}>\dfrac{4}{11}>\dfrac{6}{18}\].
Note: A fraction represents a part of a whole. Arranging the fractions in ascending order means arranging them in the increasing order of their value. While, arranging the fractions in descending order means arranging them in decreasing order of their values. Be careful while evaluating the LCM of the denominators as the LCM of any two numbers might not be the same as LCM of five numbers
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

You are awaiting your class 10th results Meanwhile class 7 english CBSE

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

The Chinese traveler Hiuen Tsang called the Prince class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

What were the major teachings of Baba Guru Nanak class 7 social science CBSE


