Answer
Verified
407.4k+ views
Hint: Here we can write the general binomial expansion of ${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^n}$ which we can write by:
${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^n}$\[ = \sum\limits_{r = 0}^n {{}^n{C_r}} {({x^{\dfrac{1}{2}}})^{n - r}}{\left( {\dfrac{1}{{{2^{\dfrac{1}{4}}}}}} \right)^r}\]
And then we can write the coefficients of the first three terms as $2b = a + c$ if the first three terms are $a,b,c$ and then we can find the number of terms easily with integral powers of $x$.
Complete step by step solution:
Here we are given to write the expansion of ${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^n}$
So we must know that the general binomial expansion is given by:
${\left( {a + b} \right)^n}$\[ = \sum\limits_{r = 0}^n {{}^n{C_r}} {(a)^{n - r}}{\left( b \right)^r}\]
So similarly we can write the expansion of the given binomial expansion and write it as:
${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^n}$\[ = \sum\limits_{r = 0}^n {{}^n{C_r}} {({x^{\dfrac{1}{2}}})^{n - r}}{\left( {\dfrac{1}{{2{x^{\dfrac{1}{4}}}}}} \right)^r}\]
Now we can simplify and write it as:
${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^n}$\[ = \sum\limits_{r = 0}^n {{}^n{C_r}} {x^{\dfrac{{n - r}}{2}}}{\left( {\dfrac{1}{2}} \right)^r}{x^{\dfrac{{ - r}}{4}}}\]$ = \sum\limits_{r = 0}^n {{}^n{C_r}} {\left( {\dfrac{1}{2}} \right)^r}{(x)^{\dfrac{{n - r}}{2} - \dfrac{r}{4}}}$
So we get the simplified form as:
${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^n}$$ = \sum\limits_{r = 0}^n {{}^n{C_r}} {\left( {\dfrac{1}{2}} \right)^r}{(x)^{\dfrac{{2n - 3r}}{4}}}$$ - - - - - (1)$
Now we have to expand the decreasing power of $x$ so we can substitute the values of $r = 0,1,2,....$ and so on.
So we get:
${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^n}$$ = {}^n{C_0}{\left( {\dfrac{1}{2}} \right)^0}{(x)^{\dfrac{{2n - 3\left( 0 \right)}}{4}}} + {}^n{C_1}{\left( {\dfrac{1}{2}} \right)^1}{(x)^{\dfrac{{2n - 3\left( 1 \right)}}{4}}} + {}^n{C_2}{\left( {\dfrac{1}{2}} \right)^2}{(x)^{\dfrac{{2n - 3\left( 2 \right)}}{4}}} + .........$
${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^n}$$ = {}^n{C_0}{(x)^{\dfrac{n}{2}}} + {}^n{C_1}\left( {\dfrac{1}{2}} \right){(x)^{\dfrac{{2n - 3}}{4}}} + {}^n{C_2}{\left( {\dfrac{1}{2}} \right)^2}{(x)^{\dfrac{{2n - 6}}{4}}} + .........$$ - - - - - \left( 2 \right)$
So we get this as the expansion of the term in the decreasing powers of the variable $x$
Now we are also given that the first three coefficients are in arithmetic progression which means these three terms have the common difference between them.
We know that if $a,b,c$ are in AP then $2b = a + c$
Hence we can write from the expansion of equation $\left( 2 \right)$ that:
\[{}^n{C_0},{}^n{C_1}\left( {\dfrac{1}{2}} \right),{}^n{C_2}{\left( {\dfrac{1}{2}} \right)^2}\] are in AP, hence we can write that:
$
2{}^n{C_1}\left( {\dfrac{1}{2}} \right) = {}^n{C_0} + {}^n{C_2}{\left( {\dfrac{1}{2}} \right)^2} \\
{}^n{C_1} = 1 + \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}.\dfrac{1}{4} \\
$
${}^n{C_1} = 1 + \dfrac{{n\left( {n - 1} \right)}}{8}$
Hence we can write that:
$
n = 1 + \dfrac{{n\left( {n - 1} \right)}}{8} \\
\left( {n - 1} \right) - \dfrac{{n\left( {n - 1} \right)}}{8} = 0 \\
\left( {n - 1} \right)\left( {1 - \dfrac{n}{8}} \right) = 0 \\
$
We can further write it as:
$
- \dfrac{1}{8}\left( {n - 1} \right)\left( {n - 8} \right) = 0 \\
\left( {n - 1} \right)\left( {n - 8} \right) = 0 \\
n = 1{\text{ or 8}} \\
$
But we know that $n$ cannot be $1$ because we are told that there are at least $3$ terms. Hence we can say that $n = 8$
Substitute $n = 8$ in equation (1) we get:
${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^8}$$ = \sum\limits_{r = 0}^8 {{}^8{C_r}} {\left( {\dfrac{1}{2}} \right)^r}{(x)^{4 - \dfrac{{3r}}{4}}}$
Hence know that power of the $x$ has to be integer which means that $4 - \dfrac{{3r}}{4} \in Z$
Therefore $\dfrac{{3r}}{4} \in Z$
So $r$ has to be multiple of $4$ so that denominator and numerator cancel each other and we get the integer.
So as $r \in \left[ {0,8} \right]$
Hence we can say that $r = 0,4,8$
Hence we can say that there are $3$ values of $r$
Option C) is the correct answer.
Note:
Whenever the student is given to expand the terms of the bracket of the form ${\left( {a + b} \right)^n}$ then we must know that its expansion can be written in the form of ${\left( {a + b} \right)^n}$\[ = \sum\limits_{r = 0}^n {{}^n{C_r}} {(a)^{n - r}}{\left( b \right)^r}\]
Therefore according to this expansion we can solve for what we are required to find.
${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^n}$\[ = \sum\limits_{r = 0}^n {{}^n{C_r}} {({x^{\dfrac{1}{2}}})^{n - r}}{\left( {\dfrac{1}{{{2^{\dfrac{1}{4}}}}}} \right)^r}\]
And then we can write the coefficients of the first three terms as $2b = a + c$ if the first three terms are $a,b,c$ and then we can find the number of terms easily with integral powers of $x$.
Complete step by step solution:
Here we are given to write the expansion of ${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^n}$
So we must know that the general binomial expansion is given by:
${\left( {a + b} \right)^n}$\[ = \sum\limits_{r = 0}^n {{}^n{C_r}} {(a)^{n - r}}{\left( b \right)^r}\]
So similarly we can write the expansion of the given binomial expansion and write it as:
${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^n}$\[ = \sum\limits_{r = 0}^n {{}^n{C_r}} {({x^{\dfrac{1}{2}}})^{n - r}}{\left( {\dfrac{1}{{2{x^{\dfrac{1}{4}}}}}} \right)^r}\]
Now we can simplify and write it as:
${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^n}$\[ = \sum\limits_{r = 0}^n {{}^n{C_r}} {x^{\dfrac{{n - r}}{2}}}{\left( {\dfrac{1}{2}} \right)^r}{x^{\dfrac{{ - r}}{4}}}\]$ = \sum\limits_{r = 0}^n {{}^n{C_r}} {\left( {\dfrac{1}{2}} \right)^r}{(x)^{\dfrac{{n - r}}{2} - \dfrac{r}{4}}}$
So we get the simplified form as:
${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^n}$$ = \sum\limits_{r = 0}^n {{}^n{C_r}} {\left( {\dfrac{1}{2}} \right)^r}{(x)^{\dfrac{{2n - 3r}}{4}}}$$ - - - - - (1)$
Now we have to expand the decreasing power of $x$ so we can substitute the values of $r = 0,1,2,....$ and so on.
So we get:
${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^n}$$ = {}^n{C_0}{\left( {\dfrac{1}{2}} \right)^0}{(x)^{\dfrac{{2n - 3\left( 0 \right)}}{4}}} + {}^n{C_1}{\left( {\dfrac{1}{2}} \right)^1}{(x)^{\dfrac{{2n - 3\left( 1 \right)}}{4}}} + {}^n{C_2}{\left( {\dfrac{1}{2}} \right)^2}{(x)^{\dfrac{{2n - 3\left( 2 \right)}}{4}}} + .........$
${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^n}$$ = {}^n{C_0}{(x)^{\dfrac{n}{2}}} + {}^n{C_1}\left( {\dfrac{1}{2}} \right){(x)^{\dfrac{{2n - 3}}{4}}} + {}^n{C_2}{\left( {\dfrac{1}{2}} \right)^2}{(x)^{\dfrac{{2n - 6}}{4}}} + .........$$ - - - - - \left( 2 \right)$
So we get this as the expansion of the term in the decreasing powers of the variable $x$
Now we are also given that the first three coefficients are in arithmetic progression which means these three terms have the common difference between them.
We know that if $a,b,c$ are in AP then $2b = a + c$
Hence we can write from the expansion of equation $\left( 2 \right)$ that:
\[{}^n{C_0},{}^n{C_1}\left( {\dfrac{1}{2}} \right),{}^n{C_2}{\left( {\dfrac{1}{2}} \right)^2}\] are in AP, hence we can write that:
$
2{}^n{C_1}\left( {\dfrac{1}{2}} \right) = {}^n{C_0} + {}^n{C_2}{\left( {\dfrac{1}{2}} \right)^2} \\
{}^n{C_1} = 1 + \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}.\dfrac{1}{4} \\
$
${}^n{C_1} = 1 + \dfrac{{n\left( {n - 1} \right)}}{8}$
Hence we can write that:
$
n = 1 + \dfrac{{n\left( {n - 1} \right)}}{8} \\
\left( {n - 1} \right) - \dfrac{{n\left( {n - 1} \right)}}{8} = 0 \\
\left( {n - 1} \right)\left( {1 - \dfrac{n}{8}} \right) = 0 \\
$
We can further write it as:
$
- \dfrac{1}{8}\left( {n - 1} \right)\left( {n - 8} \right) = 0 \\
\left( {n - 1} \right)\left( {n - 8} \right) = 0 \\
n = 1{\text{ or 8}} \\
$
But we know that $n$ cannot be $1$ because we are told that there are at least $3$ terms. Hence we can say that $n = 8$
Substitute $n = 8$ in equation (1) we get:
${\left( {{x^{\dfrac{1}{2}}} + \dfrac{1}{{2{x^{\dfrac{1}{2}}}}}} \right)^8}$$ = \sum\limits_{r = 0}^8 {{}^8{C_r}} {\left( {\dfrac{1}{2}} \right)^r}{(x)^{4 - \dfrac{{3r}}{4}}}$
Hence know that power of the $x$ has to be integer which means that $4 - \dfrac{{3r}}{4} \in Z$
Therefore $\dfrac{{3r}}{4} \in Z$
So $r$ has to be multiple of $4$ so that denominator and numerator cancel each other and we get the integer.
So as $r \in \left[ {0,8} \right]$
Hence we can say that $r = 0,4,8$
Hence we can say that there are $3$ values of $r$
Option C) is the correct answer.
Note:
Whenever the student is given to expand the terms of the bracket of the form ${\left( {a + b} \right)^n}$ then we must know that its expansion can be written in the form of ${\left( {a + b} \right)^n}$\[ = \sum\limits_{r = 0}^n {{}^n{C_r}} {(a)^{n - r}}{\left( b \right)^r}\]
Therefore according to this expansion we can solve for what we are required to find.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE