
Why is the area under the Velocity time graph the distance?
Answer
497.4k+ views
Hint: The displacement of moving objects with constant velocity is equal to the product of the object velocity and the amount of time the object is in motion.
We need a velocity-time graph when the object’s velocity gets changed.
The area under the velocity-time graph is known as displacement.
Complete step-by-step solution:
Let us draw the distance-time graph of the body from the position \[{x_1}\] and \[{x_2}\] as drawn below,
In the above diagram, the area under the curve is equal to the area of the triangle \[BCE\] and the area of the rectangle ABCD, this can be expressed as follows,
$A = (AB \times AD) + (\dfrac{1}{2} \times BC \times CE)$
Then this equation becomes,
$A = ({x_1})({t_2} - {t_1}) + \left( {\dfrac{1}{2}({t_2} - {t_1})({x_2} - {x_1})} \right)$
We have to solve the above equation then it becomes,
$A = ({t_2} - {t_1})\left( {{x_1} + \dfrac{1}{2}{x_2} - \dfrac{1}{2}{x_1}} \right)$
After simplification the equations are,
$A = ({t_2} - {t_1})\left( {\dfrac{{{x_1} + {x_2}}}{2}} \right)$
In the above equations When we consider the unit of term on the right-hand side, it gives
$A = meter \times \sec $
From this area under the distance-time graph gives nothing, Now draw the graph of the velocity of the body concerning the time
The expression for the area under the curve is as follows,
$A = (AB \times AD) + (\dfrac{1}{2} \times BC \times CE)$
The equation becomes,
$A = ({v_1})({t_2} - {t_1}) + \left( {\dfrac{1}{2}({t_2} - {t_1})({v_2} - {v_1})} \right)$
after solving the above equation,
\[A = ({t_2} - {t_1})\left( {{v_1} + \dfrac{1}{2}{v_2} - \dfrac{1}{2}{v_1}} \right)\]
Hence it becomes,
\[A = ({t_2} - {t_1})\left( {\dfrac{{{v_1} + {v_2}}}{2}} \right)\]
In the above equation, the right-hand side determines the unit we get,
\[A = \dfrac{{meter}}{{\sec }} \times \sec \]
\[A = meter\]
Here, the area under the curve of the velocity-time graph gives the distance covered by the object
Note:The velocity of the body is determined by the gradient curve in the distance-time graph.
The acceleration of the body is determined by the gradient curve in the velocity-time graph.
By integrating the curve we can calculate the area under the curve.
We need a velocity-time graph when the object’s velocity gets changed.
The area under the velocity-time graph is known as displacement.
Complete step-by-step solution:
Let us draw the distance-time graph of the body from the position \[{x_1}\] and \[{x_2}\] as drawn below,
In the above diagram, the area under the curve is equal to the area of the triangle \[BCE\] and the area of the rectangle ABCD, this can be expressed as follows,
$A = (AB \times AD) + (\dfrac{1}{2} \times BC \times CE)$
Then this equation becomes,
$A = ({x_1})({t_2} - {t_1}) + \left( {\dfrac{1}{2}({t_2} - {t_1})({x_2} - {x_1})} \right)$
We have to solve the above equation then it becomes,
$A = ({t_2} - {t_1})\left( {{x_1} + \dfrac{1}{2}{x_2} - \dfrac{1}{2}{x_1}} \right)$
After simplification the equations are,
$A = ({t_2} - {t_1})\left( {\dfrac{{{x_1} + {x_2}}}{2}} \right)$
In the above equations When we consider the unit of term on the right-hand side, it gives
$A = meter \times \sec $
From this area under the distance-time graph gives nothing, Now draw the graph of the velocity of the body concerning the time
The expression for the area under the curve is as follows,
$A = (AB \times AD) + (\dfrac{1}{2} \times BC \times CE)$
The equation becomes,
$A = ({v_1})({t_2} - {t_1}) + \left( {\dfrac{1}{2}({t_2} - {t_1})({v_2} - {v_1})} \right)$
after solving the above equation,
\[A = ({t_2} - {t_1})\left( {{v_1} + \dfrac{1}{2}{v_2} - \dfrac{1}{2}{v_1}} \right)\]
Hence it becomes,
\[A = ({t_2} - {t_1})\left( {\dfrac{{{v_1} + {v_2}}}{2}} \right)\]
In the above equation, the right-hand side determines the unit we get,
\[A = \dfrac{{meter}}{{\sec }} \times \sec \]
\[A = meter\]
Here, the area under the curve of the velocity-time graph gives the distance covered by the object
Note:The velocity of the body is determined by the gradient curve in the distance-time graph.
The acceleration of the body is determined by the gradient curve in the velocity-time graph.
By integrating the curve we can calculate the area under the curve.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

