
Approximately, what is \[\mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt 7 {x^2} + 3x - 2}}{{{x^2} + 5}}\]?
A. 2.32
B. 2.43
C. 2.54
D. 2.65
E. 2.76
Answer
585.3k+ views
Hint: In this problem, take \[{x^2}\] common from numerator and denominator. Next, substitute the given limit. Whenever, there are two polynomials of same degree in numerator and denominator, and limit tends to infinite, take the highest power of the polynomial as common from both numerator and denominator.
Complete step by step solution:
The given limit is shown below.
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt 7 {x^2} + 3x - 2}}{{{x^2} + 5}}\]
Take \[{x^2}\] common from both numerator and denominator and solve the above expression.
\[
\,\,\,\,\,\,\mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^2}\left( {\sqrt 7 + \dfrac{3}{x} - \dfrac{2}{{{x^2}}}} \right)}}{{{x^2}\left( {1 + \dfrac{5}{{{x^2}}}} \right)}} \\
\Rightarrow \mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt 7 + \dfrac{3}{x} - \dfrac{2}{{{x^2}}}}}{{1 + \dfrac{5}{{{x^2}}}}} \\
\Rightarrow \dfrac{{\sqrt 7 + 0 - 0}}{{1 + 0}} \\
\Rightarrow \sqrt 7 \\
\Rightarrow \sqrt 7 \\
\Rightarrow 2.65 \\
\]
Thus, the value of the expression \[\mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt 7 {x^2} + 3x - 2}}{{{x^2} + 5}}\] is 2.65, hence, option (D) is correct answer.
Note: Take highest power of x as common from both numerator and denominator. We can solve the given problem, using L. hospital rules also. The L hospital rule says that, when the given expression is in the form of \[\dfrac{0}{0}\,\,\,{\text{or}}\,\,\,\dfrac{\infty }{\infty }\], after substituting the given limits, differentiate the numerator and denominator of the given expression.
Complete step by step solution:
The given limit is shown below.
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt 7 {x^2} + 3x - 2}}{{{x^2} + 5}}\]
Take \[{x^2}\] common from both numerator and denominator and solve the above expression.
\[
\,\,\,\,\,\,\mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^2}\left( {\sqrt 7 + \dfrac{3}{x} - \dfrac{2}{{{x^2}}}} \right)}}{{{x^2}\left( {1 + \dfrac{5}{{{x^2}}}} \right)}} \\
\Rightarrow \mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt 7 + \dfrac{3}{x} - \dfrac{2}{{{x^2}}}}}{{1 + \dfrac{5}{{{x^2}}}}} \\
\Rightarrow \dfrac{{\sqrt 7 + 0 - 0}}{{1 + 0}} \\
\Rightarrow \sqrt 7 \\
\Rightarrow \sqrt 7 \\
\Rightarrow 2.65 \\
\]
Thus, the value of the expression \[\mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt 7 {x^2} + 3x - 2}}{{{x^2} + 5}}\] is 2.65, hence, option (D) is correct answer.
Note: Take highest power of x as common from both numerator and denominator. We can solve the given problem, using L. hospital rules also. The L hospital rule says that, when the given expression is in the form of \[\dfrac{0}{0}\,\,\,{\text{or}}\,\,\,\dfrac{\infty }{\infty }\], after substituting the given limits, differentiate the numerator and denominator of the given expression.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

