
An orbiting satellite will escape if
A. Its speed is increased by $41\% $
B. Its speed in the orbit is made $\sqrt {1.5} $ times of its initial value
C. Its KE is doubled
D. It stops moving in the orbit
Answer
577.8k+ views
Hint: Firstly, we need to define the orbital velocity and escape velocity of Earth. From these, we can interpret the increase in the speed of the orbital velocity. The kinetic energy is directly proportional to velocity squared. From this, we can know the change in the kinetic energy of the satellite.
Formula used:
${V_{orbital}} = \sqrt {\dfrac{{GM}}{{R + h}}} $
${V_{escape}} = \sqrt {\dfrac{{2GM}}{R}} $
$K.E. = \dfrac{1}{2}m{v^2}$
Complete answer:
The orbiting satellite moves around the earth with a velocity called Orbital velocity. It is the velocity with which the satellites revolve around the earth, as shown in the figure.
Orbital velocity is mathematically given by
${V_{orbital}} = \sqrt {\dfrac{{GM}}{{R + h}}} $
Where,
$G$ is the universal gravitational constant
$M$ is the mass of the Earth
$R$ is the radius of the Earth
$h$ is the height of the satellite from the Earth’s surface
Keeping this aside, the escape velocity of the Earth is the minimum velocity needed by any object to escape the Earth’s gravitational field.
Escape velocity is mathematically given by
${V_{escape}} = \sqrt {\dfrac{{2GM}}{R}} $
An orbiting satellite must reach this velocity to escape Earth’s gravity. Thus, it must increase by $\sqrt 2 $ times its initial value. Then the percentage increase in the satellite’s velocity will be
$\eqalign{
& \dfrac{{{V_{escape}} - {V_{orbital}}}}{{{V_{orbital}}}} \times 100 \cr
& = \dfrac{{{V_{escape}} - {V_{orbital}}}}{{{V_{orbital}}}} \times 100 \cr
& = \dfrac{{\sqrt 2 {V_{orbital}} - {V_{orbital}}}}{{{V_{orbital}}}} \times 100 \cr
& = \dfrac{{\sqrt 2 - 1}}{1} \times 100 \cr
& = 41\% \cr} $
Therefore, the speed increases by 41%.
As the velocity increased by $\sqrt 2 $,
The kinetic energy for any object can be given by
$K.E. = \dfrac{1}{2}m{v^2}$
From this, we have the relation, $K.E. \propto {v^2}$. Using this relation,
$\eqalign{
& \dfrac{{{{\left( {K.E.} \right)}_{initial}}}}{{{{\left( {K.E.} \right)}_{final}}}} = {\left( {\dfrac{{{v_{initial}}}}{{{v_{final}}}}} \right)^2} \cr
& \Rightarrow \dfrac{{{{\left( {K.E.} \right)}_{initial}}}}{{{{\left( {K.E.} \right)}_{final}}}} = {\left( {\dfrac{{{v_{initial}}}}{{\sqrt 2 \times {v_{initial}}}}} \right)^2} = \dfrac{1}{2} \cr
& \Rightarrow {\left( {K.E.} \right)_{final}} = 2{\left( {K.E.} \right)_{initial}} \cr} $
Thus, the kinetic energy will be doubled.
Therefore, the correct option is A and C.
Note:
Any satellite will mostly keep rotating in the orbit, like the moon. In case, it stops moving the centripetal velocity will be lost and the satellite will give in to earth’s gravity. Thus, it will crash into Earth’s surface. The escape velocity and orbital velocity can also be written in the terms of acceleration due to gravity.
Formula used:
${V_{orbital}} = \sqrt {\dfrac{{GM}}{{R + h}}} $
${V_{escape}} = \sqrt {\dfrac{{2GM}}{R}} $
$K.E. = \dfrac{1}{2}m{v^2}$
Complete answer:
The orbiting satellite moves around the earth with a velocity called Orbital velocity. It is the velocity with which the satellites revolve around the earth, as shown in the figure.
Orbital velocity is mathematically given by
${V_{orbital}} = \sqrt {\dfrac{{GM}}{{R + h}}} $
Where,
$G$ is the universal gravitational constant
$M$ is the mass of the Earth
$R$ is the radius of the Earth
$h$ is the height of the satellite from the Earth’s surface
Keeping this aside, the escape velocity of the Earth is the minimum velocity needed by any object to escape the Earth’s gravitational field.
Escape velocity is mathematically given by
${V_{escape}} = \sqrt {\dfrac{{2GM}}{R}} $
An orbiting satellite must reach this velocity to escape Earth’s gravity. Thus, it must increase by $\sqrt 2 $ times its initial value. Then the percentage increase in the satellite’s velocity will be
$\eqalign{
& \dfrac{{{V_{escape}} - {V_{orbital}}}}{{{V_{orbital}}}} \times 100 \cr
& = \dfrac{{{V_{escape}} - {V_{orbital}}}}{{{V_{orbital}}}} \times 100 \cr
& = \dfrac{{\sqrt 2 {V_{orbital}} - {V_{orbital}}}}{{{V_{orbital}}}} \times 100 \cr
& = \dfrac{{\sqrt 2 - 1}}{1} \times 100 \cr
& = 41\% \cr} $
Therefore, the speed increases by 41%.
As the velocity increased by $\sqrt 2 $,
The kinetic energy for any object can be given by
$K.E. = \dfrac{1}{2}m{v^2}$
From this, we have the relation, $K.E. \propto {v^2}$. Using this relation,
$\eqalign{
& \dfrac{{{{\left( {K.E.} \right)}_{initial}}}}{{{{\left( {K.E.} \right)}_{final}}}} = {\left( {\dfrac{{{v_{initial}}}}{{{v_{final}}}}} \right)^2} \cr
& \Rightarrow \dfrac{{{{\left( {K.E.} \right)}_{initial}}}}{{{{\left( {K.E.} \right)}_{final}}}} = {\left( {\dfrac{{{v_{initial}}}}{{\sqrt 2 \times {v_{initial}}}}} \right)^2} = \dfrac{1}{2} \cr
& \Rightarrow {\left( {K.E.} \right)_{final}} = 2{\left( {K.E.} \right)_{initial}} \cr} $
Thus, the kinetic energy will be doubled.
Therefore, the correct option is A and C.
Note:
Any satellite will mostly keep rotating in the orbit, like the moon. In case, it stops moving the centripetal velocity will be lost and the satellite will give in to earth’s gravity. Thus, it will crash into Earth’s surface. The escape velocity and orbital velocity can also be written in the terms of acceleration due to gravity.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

