
An isotropic solid has linear expansion (coefficient of \[{{\alpha }_{x}}\],\[{{\alpha }_{y}}\]and \[{{\alpha }_{z}}\]for three rectangular axes in a solid). The coefficient of cubical expansion is
\[\begin{align}
& A.\,{{\alpha }_{x}}{{\alpha }_{y}}{{\alpha }_{z}} \\
& B.\,\dfrac{{{\alpha }_{x}}}{{{\alpha }_{y}}+{{\alpha }_{z}}} \\
& C.\,{{\alpha }_{x}}+{{\alpha }_{y}}+{{\alpha }_{z}} \\
& D.\,{{\alpha }^{2}}_{x}+{{\alpha }^{2}}_{y}+{{\alpha }^{2}}_{z} \\
\end{align}\]
Answer
533.4k+ views
Hint: The coefficient of the cubical expansion equals the coefficient of the volume expansion. As the coefficients of the rectangular solid are given, so, we will consider the cuboid to find the coefficients of the cubical expansion.
Formula used:
\[V={{V}_{0}}(1+\gamma T)\]
Complete answer:
From the given information, we have the data as follows.
An isotropic solid has linear expansion (coefficient of \[{{\alpha }_{x}}\],\[{{\alpha }_{y}}\]and \[{{\alpha }_{z}}\]for three rectangular axes in a solid).
The initial temperature of the cuboid is, \[0{}^\circ C\]
The final temperature of the cuboid is, \[T{}^\circ C\]
Thus, the change in the temperature is,
\[\begin{align}
& \Delta T=T-0 \\
& \therefore \Delta T=T{}^\circ C \\
\end{align}\]
The new linear expansion coefficients at the temperature T are\[\alpha {{'}_{x}}\],\[\alpha {{'}_{y}}\]and \[\alpha {{'}_{z}}\].
\[\begin{align}
& a_{x}^{'}={{a}_{x}}(1+{{\alpha }_{x}}T) \\
& a_{y}^{'}={{a}_{y}}(1+{{\alpha }_{y}}T) \\
& a_{z}^{'}={{a}_{z}}(1+{{\alpha }_{z}}T) \\
\end{align}\]
The coefficient of the cubical expansion equals the coefficient of the volume expansion.
The volume of the cuboid at the temperature T is \[a_{x}^{'}a_{y}^{'}a_{z}^{'}\]
Consider the volume of the cuboid at this temperature and substitute the values of the linear expansion coefficients.
As the coefficients of the rectangular solid are given, so, we will consider the cuboid to find the coefficients of the cubical expansion.
\[\begin{align}
& V'=a_{x}^{'}a_{y}^{'}a_{z}^{'} \\
& \Rightarrow V'={{a}_{x}}(1+{{\alpha }_{x}}T)\times {{a}_{y}}(1+{{\alpha }_{y}}T)\times {{a}_{z}}(1+{{\alpha }_{z}}T) \\
& \therefore V'={{a}_{x}}{{a}_{y}}{{a}_{z}}(1+{{\alpha }_{x}}T){{a}_{y}}(1+{{\alpha }_{y}}T){{a}_{z}}(1+{{\alpha }_{z}}T) \\
\end{align}\]
The coefficient of the volume expansion is, \[V={{V}_{0}}(1+\gamma T)\]
Continue further expansion of the above equation.
\[V'={{a}_{x}}{{a}_{y}}{{a}_{z}}\left[ 1+({{\alpha }_{x}}+{{\alpha }_{y}}+{{\alpha }_{z}})T+{{\alpha }_{x}}{{\alpha }_{y}}{{\alpha }_{z}}{{T}^{3}}+{{T}^{2}}({{\alpha }_{x}}{{\alpha }_{y}}+{{\alpha }_{y}}{{\alpha }_{z}}+{{\alpha }_{x}}{{\alpha }_{z}}) \right]\]
Neglect the \[{{T}^{2}}\]and \[{{T}^{3}}\]terms as, \[{{\alpha }_{x}}^{2}<<<{{\alpha }_{x}}\Rightarrow {{\alpha }_{x}}{{\alpha }_{y}}<<<{{\alpha }_{x}},\,\,{{\alpha }_{x}}{{\alpha }_{y}}{{\alpha }_{z}}<<<{{\alpha }_{x}}\]
\[V'={{a}_{x}}{{a}_{y}}{{a}_{z}}\left[ 1+({{\alpha }_{x}}+{{\alpha }_{y}}+{{\alpha }_{z}})T \right]\]
Compare the above equation with the basic equation of the volume expansion. So, we get,
\[\gamma ={{\alpha }_{x}}+{{\alpha }_{y}}+{{\alpha }_{z}}\]
\[\therefore \] The coefficient of cubical expansion is \[{{\alpha }_{x}}+{{\alpha }_{y}}+{{\alpha }_{z}}\] .
Thus, option (C) is correct.
Note:
The basic relation between the coefficient of the linear expansion and the coefficient of the volume expansion is that the coefficient of the volume expansion is 3 times the coefficient of the linear expansion. Both these coefficients depend on the temperature and the type of material.
Formula used:
\[V={{V}_{0}}(1+\gamma T)\]
Complete answer:
From the given information, we have the data as follows.
An isotropic solid has linear expansion (coefficient of \[{{\alpha }_{x}}\],\[{{\alpha }_{y}}\]and \[{{\alpha }_{z}}\]for three rectangular axes in a solid).
The initial temperature of the cuboid is, \[0{}^\circ C\]
The final temperature of the cuboid is, \[T{}^\circ C\]
Thus, the change in the temperature is,
\[\begin{align}
& \Delta T=T-0 \\
& \therefore \Delta T=T{}^\circ C \\
\end{align}\]
The new linear expansion coefficients at the temperature T are\[\alpha {{'}_{x}}\],\[\alpha {{'}_{y}}\]and \[\alpha {{'}_{z}}\].
\[\begin{align}
& a_{x}^{'}={{a}_{x}}(1+{{\alpha }_{x}}T) \\
& a_{y}^{'}={{a}_{y}}(1+{{\alpha }_{y}}T) \\
& a_{z}^{'}={{a}_{z}}(1+{{\alpha }_{z}}T) \\
\end{align}\]
The coefficient of the cubical expansion equals the coefficient of the volume expansion.
The volume of the cuboid at the temperature T is \[a_{x}^{'}a_{y}^{'}a_{z}^{'}\]
Consider the volume of the cuboid at this temperature and substitute the values of the linear expansion coefficients.
As the coefficients of the rectangular solid are given, so, we will consider the cuboid to find the coefficients of the cubical expansion.
\[\begin{align}
& V'=a_{x}^{'}a_{y}^{'}a_{z}^{'} \\
& \Rightarrow V'={{a}_{x}}(1+{{\alpha }_{x}}T)\times {{a}_{y}}(1+{{\alpha }_{y}}T)\times {{a}_{z}}(1+{{\alpha }_{z}}T) \\
& \therefore V'={{a}_{x}}{{a}_{y}}{{a}_{z}}(1+{{\alpha }_{x}}T){{a}_{y}}(1+{{\alpha }_{y}}T){{a}_{z}}(1+{{\alpha }_{z}}T) \\
\end{align}\]
The coefficient of the volume expansion is, \[V={{V}_{0}}(1+\gamma T)\]
Continue further expansion of the above equation.
\[V'={{a}_{x}}{{a}_{y}}{{a}_{z}}\left[ 1+({{\alpha }_{x}}+{{\alpha }_{y}}+{{\alpha }_{z}})T+{{\alpha }_{x}}{{\alpha }_{y}}{{\alpha }_{z}}{{T}^{3}}+{{T}^{2}}({{\alpha }_{x}}{{\alpha }_{y}}+{{\alpha }_{y}}{{\alpha }_{z}}+{{\alpha }_{x}}{{\alpha }_{z}}) \right]\]
Neglect the \[{{T}^{2}}\]and \[{{T}^{3}}\]terms as, \[{{\alpha }_{x}}^{2}<<<{{\alpha }_{x}}\Rightarrow {{\alpha }_{x}}{{\alpha }_{y}}<<<{{\alpha }_{x}},\,\,{{\alpha }_{x}}{{\alpha }_{y}}{{\alpha }_{z}}<<<{{\alpha }_{x}}\]
\[V'={{a}_{x}}{{a}_{y}}{{a}_{z}}\left[ 1+({{\alpha }_{x}}+{{\alpha }_{y}}+{{\alpha }_{z}})T \right]\]
Compare the above equation with the basic equation of the volume expansion. So, we get,
\[\gamma ={{\alpha }_{x}}+{{\alpha }_{y}}+{{\alpha }_{z}}\]
\[\therefore \] The coefficient of cubical expansion is \[{{\alpha }_{x}}+{{\alpha }_{y}}+{{\alpha }_{z}}\] .
Thus, option (C) is correct.
Note:
The basic relation between the coefficient of the linear expansion and the coefficient of the volume expansion is that the coefficient of the volume expansion is 3 times the coefficient of the linear expansion. Both these coefficients depend on the temperature and the type of material.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

