Answer
Verified
418.2k+ views
Hint: Here, a square is given from which an isosceles triangle is to be cut. Therefore, we have an isosceles triangle and square. Therefore, we will use the formula for the area of the triangle for the isosceles triangle and the area of the lamina for the square.
Formula used:
The formula of the area of triangle is given by
${A_t} = \dfrac{1}{2}hl$
Here, $l$ is the length of the square from the triangle is to be cut down and $h$ is the height of the triangle.
The formula of the area of lamina is given below
${A_l} = {l^2} - {A_t}$
Here, $l$ is the length of the square and ${A_t}$ is the area of the triangle.
Complete step by step answer:
Here, an isosceles triangle is cut down from the square. Therefore, the area of triangle is given below
${A_t} = \dfrac{1}{2}hl$
Also, the area of lamina is given below
${A_l} = {l^2} - {A_t}$
Now, putting the value of area of triangle in the above formula as shown below
${A_l} = {l^2} - \dfrac{1}{2}hl$
$ \Rightarrow \,{A_l} = l\left( {l - \dfrac{1}{2}h} \right)$
Now, the center of mass of the triangle will be situated on its altitude at distance $\dfrac{h}{3}$ from the base. Now, according to the question, the center of mas of lamina is situated at P.
Now, according the diagram, the center of mass of the square is at point C, therefore, we get the following relation
${A_t}\left( {\dfrac{l}{2} - \dfrac{h}{3}} \right) = {A_l}\left( {\dfrac{l}{2} - \left( {l - h} \right)} \right)$
$ \Rightarrow \,\dfrac{1}{2}hl\left( {\dfrac{l}{2} - \dfrac{h}{3}} \right) = l\left( {l - \dfrac{1}{2}h} \right) \times \left( {\dfrac{l}{2} - \left( {l - h} \right)} \right)$
$ \Rightarrow \,\dfrac{2}{3}{h^2} - 2hl + {l^2} = 0$
$ \Rightarrow \,2{h^2} - 6hl + 2{l^2} = 0$
Now, we will use the quadratic formula to solve the above equation as shown below
$h = \dfrac{{6l \pm \sqrt {{{\left( {6l} \right)}^2} - 4 \times 2 \times 2{l^2}} }}{{2 \times 2}}$
$ \Rightarrow \,h = \dfrac{{6l \pm \sqrt {36{l^2} - 16{l^2}} }}{4}$
$ \Rightarrow \,h = \dfrac{{6l \pm \sqrt {20{l^2}} }}{4}$
$ \Rightarrow h = \dfrac{{6l \pm 2l\sqrt 3 }}{4}$
$ \therefore \,h = \left( {\dfrac{{3 \pm \sqrt 3 }}{2}} \right)l$
Now, the root $\left( {\dfrac{{3 - \sqrt 3 }}{2}} \right)l$ satisfies the condition $0 < h < l$. Therefore, the value of $h$ is $\left( {\dfrac{{3 - \sqrt 3 }}{2}} \right)l$.
Hence, option (A) is correct.
Note: We have used the formula of lamina because the square here behaves like a sheet from which an isosceles triangle is taken out. Here, we have used the quadratic formula because we cannot make factors of the equation. Also, the quadratic formula is used to find the value of $h$ which is in the form of $l$.
Formula used:
The formula of the area of triangle is given by
${A_t} = \dfrac{1}{2}hl$
Here, $l$ is the length of the square from the triangle is to be cut down and $h$ is the height of the triangle.
The formula of the area of lamina is given below
${A_l} = {l^2} - {A_t}$
Here, $l$ is the length of the square and ${A_t}$ is the area of the triangle.
Complete step by step answer:
Here, an isosceles triangle is cut down from the square. Therefore, the area of triangle is given below
${A_t} = \dfrac{1}{2}hl$
Also, the area of lamina is given below
${A_l} = {l^2} - {A_t}$
Now, putting the value of area of triangle in the above formula as shown below
${A_l} = {l^2} - \dfrac{1}{2}hl$
$ \Rightarrow \,{A_l} = l\left( {l - \dfrac{1}{2}h} \right)$
Now, the center of mass of the triangle will be situated on its altitude at distance $\dfrac{h}{3}$ from the base. Now, according to the question, the center of mas of lamina is situated at P.
Now, according the diagram, the center of mass of the square is at point C, therefore, we get the following relation
${A_t}\left( {\dfrac{l}{2} - \dfrac{h}{3}} \right) = {A_l}\left( {\dfrac{l}{2} - \left( {l - h} \right)} \right)$
$ \Rightarrow \,\dfrac{1}{2}hl\left( {\dfrac{l}{2} - \dfrac{h}{3}} \right) = l\left( {l - \dfrac{1}{2}h} \right) \times \left( {\dfrac{l}{2} - \left( {l - h} \right)} \right)$
$ \Rightarrow \,\dfrac{2}{3}{h^2} - 2hl + {l^2} = 0$
$ \Rightarrow \,2{h^2} - 6hl + 2{l^2} = 0$
Now, we will use the quadratic formula to solve the above equation as shown below
$h = \dfrac{{6l \pm \sqrt {{{\left( {6l} \right)}^2} - 4 \times 2 \times 2{l^2}} }}{{2 \times 2}}$
$ \Rightarrow \,h = \dfrac{{6l \pm \sqrt {36{l^2} - 16{l^2}} }}{4}$
$ \Rightarrow \,h = \dfrac{{6l \pm \sqrt {20{l^2}} }}{4}$
$ \Rightarrow h = \dfrac{{6l \pm 2l\sqrt 3 }}{4}$
$ \therefore \,h = \left( {\dfrac{{3 \pm \sqrt 3 }}{2}} \right)l$
Now, the root $\left( {\dfrac{{3 - \sqrt 3 }}{2}} \right)l$ satisfies the condition $0 < h < l$. Therefore, the value of $h$ is $\left( {\dfrac{{3 - \sqrt 3 }}{2}} \right)l$.
Hence, option (A) is correct.
Note: We have used the formula of lamina because the square here behaves like a sheet from which an isosceles triangle is taken out. Here, we have used the quadratic formula because we cannot make factors of the equation. Also, the quadratic formula is used to find the value of $h$ which is in the form of $l$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE