
An icebox made of $ 1.5\text{ cm} $ thick Styrofoam has dimensions $ 60\text{ cm }\times \text{ 60 cm }\times \text{30 cm} $ . It contains ice at $ 0{}^\circ \text{C} $ and is kept in a room at $ 40{}^\circ \text{C} $ . Find the rate at which ice is melting. Latent heat of fusion of ice $ =3.36\times {{10}^{6}}J/kg $ $ $
And thermal conductivity of Styrofoam is $ =0.04W/m{{-}^{\circ }}C $ .
Answer
535.8k+ views
Hint First calculate the rate of heat flow into the box, and then the rate at which ice melts can be calculated by dividing rate of heat flow by latent heat of fusion of ice.
Use the following formulas while deriving the answer.
$ \text{Total surface area of a cuboid = }2\left( lb+bh+hl \right) $
(Where, l, b, h are length, breadth and height respectively).
Rate of heat flow is given by,
Where, $ x $ : thickness, $ \dfrac{\Delta Q}{\Delta t}=\dfrac{KA({{\theta }_{1}}-{{\theta }_{2}})}{x} $
K: Thermal conductivity of material
A: surface area
$ {{\theta }_{1}}-{{\theta }_{2}} $ : Temperature difference
Rate at which ice changes to liquid $ =\dfrac{1}{L}\left( \dfrac{\Delta Q}{\Delta t} \right) $
Where, L is the latent heat of fusion.
Complete step by step solution:
$ \begin{align}
& \text{Total surface area of walls of icebox = 2}\left( lb+bh+hl \right) \\
& =2\left( 60\times 60+60\times 30+30\times 60 \right)\times {{10}^{-4}}{{m}^{2}} \\
& =1.44{{m}^{2}}
\end{align} $
Given, thickness of the walls of the container $ =1.5\times {{10}^{-2}}m=0.015m $
Rate of heat flow into the box , $ \dfrac{\Delta Q}{\Delta t}=\dfrac{KA({{\theta }_{1}}-{{\theta }_{2}})}{x} $
$ \begin{align}
& =\dfrac{0.04\times 1.44\times (40-0)}{0.015} \\
& =154W
\end{align} $
$ \begin{align}
& \dfrac{0.04\times 1.44\times (40-0)}{0.015}=154W \\
& \\
\end{align} $
Where $ {{\theta }_{1}} $ is the temperature of ice $ \left( 0{}^\circ \text{C} \right) $
And $ {{\theta }_{2}} $ is the room temperature $ \left( 40{}^\circ \text{C} \right) $
Therefore, rate at which ice melts is $ =\dfrac{1}{L}\left( \dfrac{\Delta Q}{\Delta t} \right)=154/\text{Latent heat of fusion} $
$ \begin{align}
& =\dfrac{154}{3.36\times {{10}^{5}}\times {{10}^{-3}}} \\
& =0.46g/s \\
\end{align} $
Note:
The enthalpy of fusion of a substance, also known as (latent) heat of fusion is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.
Do calculations involved carefully, especially while converting one unit to another. Learn the formulas involved in the question, to use them directly in problems. Surface area of various geometric figures like cube, cuboid, cylinder and sphere should be known to students.
$ \dfrac{154}{3.36\times {{10}^{5}}\times {{10}^{-3}}}=0.46g/s $
Use the following formulas while deriving the answer.
$ \text{Total surface area of a cuboid = }2\left( lb+bh+hl \right) $
(Where, l, b, h are length, breadth and height respectively).
Rate of heat flow is given by,
Where, $ x $ : thickness, $ \dfrac{\Delta Q}{\Delta t}=\dfrac{KA({{\theta }_{1}}-{{\theta }_{2}})}{x} $
K: Thermal conductivity of material
A: surface area
$ {{\theta }_{1}}-{{\theta }_{2}} $ : Temperature difference
Rate at which ice changes to liquid $ =\dfrac{1}{L}\left( \dfrac{\Delta Q}{\Delta t} \right) $
Where, L is the latent heat of fusion.
Complete step by step solution:
$ \begin{align}
& \text{Total surface area of walls of icebox = 2}\left( lb+bh+hl \right) \\
& =2\left( 60\times 60+60\times 30+30\times 60 \right)\times {{10}^{-4}}{{m}^{2}} \\
& =1.44{{m}^{2}}
\end{align} $
Given, thickness of the walls of the container $ =1.5\times {{10}^{-2}}m=0.015m $
Rate of heat flow into the box , $ \dfrac{\Delta Q}{\Delta t}=\dfrac{KA({{\theta }_{1}}-{{\theta }_{2}})}{x} $
$ \begin{align}
& =\dfrac{0.04\times 1.44\times (40-0)}{0.015} \\
& =154W
\end{align} $
$ \begin{align}
& \dfrac{0.04\times 1.44\times (40-0)}{0.015}=154W \\
& \\
\end{align} $
Where $ {{\theta }_{1}} $ is the temperature of ice $ \left( 0{}^\circ \text{C} \right) $
And $ {{\theta }_{2}} $ is the room temperature $ \left( 40{}^\circ \text{C} \right) $
Therefore, rate at which ice melts is $ =\dfrac{1}{L}\left( \dfrac{\Delta Q}{\Delta t} \right)=154/\text{Latent heat of fusion} $
$ \begin{align}
& =\dfrac{154}{3.36\times {{10}^{5}}\times {{10}^{-3}}} \\
& =0.46g/s \\
\end{align} $
Note:
The enthalpy of fusion of a substance, also known as (latent) heat of fusion is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.
Do calculations involved carefully, especially while converting one unit to another. Learn the formulas involved in the question, to use them directly in problems. Surface area of various geometric figures like cube, cuboid, cylinder and sphere should be known to students.
$ \dfrac{154}{3.36\times {{10}^{5}}\times {{10}^{-3}}}=0.46g/s $
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

