Answer
Verified
448.5k+ views
Hint: The problem can be simplified by assuming the actual values (not ratios) of the quantities using variables. This will simplify the problem from mere statements into mathematical equations. Also, the total wage bill will be equal to the product of the number of employees and their wages. Using this information, the required result can be calculated easily.
Complete step-by-step answer:
It is given that the number of employees are reduced in the ratio \[8:5\]. So,
$\dfrac{{number\,of\,employees\,before}}{{number\,of\,employees\,after}}$$ = $$\dfrac{8}{5}$
It is also given that their wages(per employee) were increased in the ratio $7:9$. So,
$\dfrac{{Initial\,wages}}{{New\,wages}}$$ = $$\dfrac{7}{9}$
To approach this problem in a mathematical form, we need to assume the actual values of the number of employees and their wages using particular variables. This will simplify the question. Further, these values can be used to achieve the desired result.
Let the initial number of employees $ = $$8x$
And the final number of employees $ = $$5x$
Also, let the total initial wage $ = $$7y$
And the new wage $ = $$9y$
Remember that here, $x$ and $y$ are constants.
The Overall Wage bill will depend on both, the number of employees and the wage of each employee. It will be equal to the product of the number of employees and the wage per person.
Therefore, overall wages bill $ = $number of employees $ \times $ wage per person
So, initial overall wages bill $ = $$8x\, \times \,7y = 56xy$
Final overall wages bill $ = $$5x\, \times \,9y = 45xy$
Now, we can use these parameters to calculate the required ratio. Also, note that as the ratio is a fraction, the variables will cut off and leave a pure solution in the end.
$\therefore $ Ratio $ = $$\dfrac{{Initial\,overall\,wage\,bill}}{{Final\,overall\,wage\,\,bill}}$
Ratio $ = $$\dfrac{{56xy}}{{45xy}}$$ = $$\dfrac{{56}}{{45}}$
Ratio$ \to $$56:45$
$\therefore $The overall wages bill is decreased in the ratio $56:45$
So, the correct answer is “Option B”.
Note: The student should not confuse himself between the ratio value and original value. Therefore constants x and y are used to simplify our purpose of calculation. Also, since our final solution required is also in ratio form, it should be clear that these variables used should be eliminated using some techniques, so that we are left with the pure solution in the end. In our case, the ratio form helped to eliminate these variables since they were located on both, the numerator and denominator positions.
Complete step-by-step answer:
It is given that the number of employees are reduced in the ratio \[8:5\]. So,
$\dfrac{{number\,of\,employees\,before}}{{number\,of\,employees\,after}}$$ = $$\dfrac{8}{5}$
It is also given that their wages(per employee) were increased in the ratio $7:9$. So,
$\dfrac{{Initial\,wages}}{{New\,wages}}$$ = $$\dfrac{7}{9}$
To approach this problem in a mathematical form, we need to assume the actual values of the number of employees and their wages using particular variables. This will simplify the question. Further, these values can be used to achieve the desired result.
Let the initial number of employees $ = $$8x$
And the final number of employees $ = $$5x$
Also, let the total initial wage $ = $$7y$
And the new wage $ = $$9y$
Remember that here, $x$ and $y$ are constants.
The Overall Wage bill will depend on both, the number of employees and the wage of each employee. It will be equal to the product of the number of employees and the wage per person.
Therefore, overall wages bill $ = $number of employees $ \times $ wage per person
So, initial overall wages bill $ = $$8x\, \times \,7y = 56xy$
Final overall wages bill $ = $$5x\, \times \,9y = 45xy$
Now, we can use these parameters to calculate the required ratio. Also, note that as the ratio is a fraction, the variables will cut off and leave a pure solution in the end.
$\therefore $ Ratio $ = $$\dfrac{{Initial\,overall\,wage\,bill}}{{Final\,overall\,wage\,\,bill}}$
Ratio $ = $$\dfrac{{56xy}}{{45xy}}$$ = $$\dfrac{{56}}{{45}}$
Ratio$ \to $$56:45$
$\therefore $The overall wages bill is decreased in the ratio $56:45$
So, the correct answer is “Option B”.
Note: The student should not confuse himself between the ratio value and original value. Therefore constants x and y are used to simplify our purpose of calculation. Also, since our final solution required is also in ratio form, it should be clear that these variables used should be eliminated using some techniques, so that we are left with the pure solution in the end. In our case, the ratio form helped to eliminate these variables since they were located on both, the numerator and denominator positions.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell