
An angle is twice as large as its complement. What is the measure of the angle and its complement?
Answer
493.2k+ views
Hint: In this question, we need to find the angle and its complement angle. Given that an angle is twice of its complement. Geometrically, two angles are said to be complementary angles if their sum is \[90^{o}\]. In some cases, they form a right angled triangle. Here We need to find the angle and its complement. We can assume the angle by a variable, then as per the given the complement is twice the angle. First we need to form an expression as the question says. Then by solving, we can find the value of the angle and its complement.
Complete step-by-step solution:
Let us assume the angle is \[x\]. Given that the complement is twice of the angle. That is the complement is \[2x\].
We also know that two angles are said to be complementary angles if their sum is \[90^{o}\].
\[\Rightarrow x+2x=90^{o}\]
By adding, we get,
\[\Rightarrow 3x=90^{o}\]
\[\Rightarrow x=\dfrac{(90^{o})}{3}\]
On simplifying, we get,
\[x=30^{o}\]
Thus we get the angle as \[30^{o}\]. Now we can find the complement of the angle which \[2x\].
\[\Rightarrow 2\times (30^{o})\]
On multiplying, we get,
The complement angle as \[60^{o}\].
The angle and its complement are \[30^{o}\] and \[60^{o}\] respectively.
Note: We can also check whether our answer is correct or not. We know that two angles are said to be complementary angles if their sum is \[90^{o}\]. If the sum of the angle and the complement is \[90^{o}\] then our answer is absolutely correct. A simple example for the complementary angles are \[50^{o}\] and \[40^{o}\].Similarly, two angles are said to be supplementary angles if their sum is \[180^{o}\]. A simple example for supplementary angles are \[160^{o}\] and \[20^{o}\].
Complete step-by-step solution:
Let us assume the angle is \[x\]. Given that the complement is twice of the angle. That is the complement is \[2x\].
We also know that two angles are said to be complementary angles if their sum is \[90^{o}\].
\[\Rightarrow x+2x=90^{o}\]
By adding, we get,
\[\Rightarrow 3x=90^{o}\]
\[\Rightarrow x=\dfrac{(90^{o})}{3}\]
On simplifying, we get,
\[x=30^{o}\]
Thus we get the angle as \[30^{o}\]. Now we can find the complement of the angle which \[2x\].
\[\Rightarrow 2\times (30^{o})\]
On multiplying, we get,
The complement angle as \[60^{o}\].
The angle and its complement are \[30^{o}\] and \[60^{o}\] respectively.
Note: We can also check whether our answer is correct or not. We know that two angles are said to be complementary angles if their sum is \[90^{o}\]. If the sum of the angle and the complement is \[90^{o}\] then our answer is absolutely correct. A simple example for the complementary angles are \[50^{o}\] and \[40^{o}\].Similarly, two angles are said to be supplementary angles if their sum is \[180^{o}\]. A simple example for supplementary angles are \[160^{o}\] and \[20^{o}\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

