
An alternating voltage is given by $e = {e_1}\sin \omega t + {e_2}\cos \omega t$. Then the root means the square value of voltage.
(A) $\sqrt {e_1^2 + e_2^2} $
(B) $\sqrt {{e_1}{e_2}} $
(C) $\sqrt {\dfrac{{{e_1}{e_2}}}{2}} $
(D) $\sqrt {\dfrac{{e_1^2 + e_2^2}}{2}} $
Answer
579k+ views
Hint: The root mean square value of any physical quantity is given as
Let A is the any physical quantity
So, ${A_{rms}} = \sqrt {{{\bar A}^2}} $
or $A_{rms}^2 = \dfrac{{\int\limits_0^T {{A^2}dt} }}{{\int\limits_0^T {dt} }}$ (for complete circle)
Complete step by step solution:
Given that alternating voltage
$e = {e_1}\sin \omega t + {e_2}\cos \omega t$
So, for complete circle cone cycle of AC
${e_{rms}} = \sqrt {{{\bar e}^2}} $
$e_{rms}^2 = {\bar e^2}\dfrac{{\int\limits_0^T {{e^2}dt} }}{{\int\limits_0^T {dt} }}$
$e_{rms}^2 = \dfrac{{\int\limits_0^T {{{({e_1}\sin \omega t + {e_2}\cos \omega t)}^2}dt} }}{{\int\limits_0^T {dt} }}$
$e_{rms}^2 = \dfrac{1}{T}\left[ {e_1^2\int\limits_0^T {({{\sin }^2}\omega t)dt + {e_1}{e_2}\int\limits_0^T {(\sin 2\omega t)dt} } + e_2^2\int\limits_0^T {({{\cos }^2}\omega t)dt} } \right]$
$e_{rms}^2 = \dfrac{1}{T}\left[ {e_1^2\int\limits_0^T {\left( {\dfrac{{1 - \cos 2\omega t}}{2}} \right)dt + {e_1}{e_2}\left[ {\dfrac{{ - \cos 2\omega t}}{{2\omega }}} \right]_0^T} + e_2^2\int\limits_0^T {\left( {\dfrac{{1 + \cos 2\omega t}}{2}} \right)} dt} \right]$
$e_{rms}^2 = \dfrac{1}{T}\left[ {\dfrac{{e_1^2}}{2}\left( {t - \dfrac{{\sin 2\omega t}}{{2\omega }}} \right)_0^T - \dfrac{{{e_1}{e_2}}}{{2\omega }}(\cos 2\omega T - \cos 0) + \dfrac{{e_2^2}}{2}\left( {t + \dfrac{{\sin 2\omega t}}{{2\omega }}} \right)_0^T} \right]$
$e_{rms}^2 = \dfrac{1}{T}\left[ {\dfrac{{e_1^2}}{2}\left[ {T - \dfrac{1}{{2\omega }}\left( {\sin 2\omega T - \sin 0} \right)} \right] - \dfrac{{{e_1}{e_2}}}{{2\omega }}\left( {\cos 2\omega T - 1} \right) + \dfrac{{e_2^2}}{2}\left[ {T + \dfrac{1}{{2\omega }}\left( {\sin 2\omega T - \sin 0} \right)} \right]} \right]$
$\because T = \dfrac{{2\pi }}{\omega }$
$e_{rms}^2 = \dfrac{1}{T}\left[ {\dfrac{{e_1^2}}{2}\left[ {\dfrac{{2\pi }}{\omega } - \dfrac{1}{{2\omega }}\left( {\sin 2\omega \dfrac{{2\pi }}{\omega } - 0} \right) - \dfrac{{{e_1}{e_2}}}{{2\omega }}\left( {\cos 2\omega \dfrac{{2\pi }}{\omega } - 1} \right) + \dfrac{{e_2^2}}{2}\left[ {\dfrac{{2\pi }}{\omega } + \dfrac{1}{{2\omega }}\left( {\sin 2\omega \dfrac{{2\pi }}{\omega }} \right)} \right]} \right]} \right]$
$e_{rms}^2 = \dfrac{1}{T}\left[ {\dfrac{{e_1^2}}{2}\left[ {\dfrac{{2\pi }}{\omega } - 0} \right] - \dfrac{{{e_1}{e_2}}}{{2\omega }}\left( {1 - 1} \right) + \dfrac{{e_2^2}}{2}\left( {\dfrac{{2\pi }}{\omega } - 0} \right)} \right]$
$\left( {\sin n\pi = 0} \right)$ where $n = 0,1,2,....$
$(\cos 4\pi = 1)$
$e_{rms}^2 = \dfrac{\omega }{{2\pi }}\left[ {\dfrac{{e_1^2}}{2} \times \dfrac{{2\pi }}{\omega } + \dfrac{{e_2^2}}{2} \times \dfrac{{2\pi }}{\omega }} \right]$
$e_{rms}^2 = \dfrac{{e_1^2 + e_2^2}}{2}$
$\boxed{{e_{rms}} = \sqrt {\dfrac{{e_1^2 + e_2^2}}{2}} }$
Hence option D is correct.
Note: We know that the mean or expectation value of sin 0 & cos 0 is 0 and ${\sin ^2}0$ & ${\cos ^2}0$ is $\dfrac{1}{2}$.
So, we can directly calculate the root mean square value of alternating voltage.
$e_{rms}^2 = < {({e_1}\sin \omega t + {e_2}\cos \omega t)^2} > $
$ = e_1^2 < {\sin ^2}\omega t > + 2{e_1}{e_2} < \sin \omega t > < \cos \omega t > + e_2^2 < {\cos ^2}\omega t > $
$e_{rms}^2 = \dfrac{{e_1^2}}{2} + 0 + \dfrac{{e_2^2}}{2}$
$e_{rms}^2 = \dfrac{{e_1^2 + e_2^2}}{2}$
$\boxed{{e_{rms}} = \sqrt {\dfrac{{e_1^2 + e_2^2}}{2}} }$
Let A is the any physical quantity
So, ${A_{rms}} = \sqrt {{{\bar A}^2}} $
or $A_{rms}^2 = \dfrac{{\int\limits_0^T {{A^2}dt} }}{{\int\limits_0^T {dt} }}$ (for complete circle)
Complete step by step solution:
Given that alternating voltage
$e = {e_1}\sin \omega t + {e_2}\cos \omega t$
So, for complete circle cone cycle of AC
${e_{rms}} = \sqrt {{{\bar e}^2}} $
$e_{rms}^2 = {\bar e^2}\dfrac{{\int\limits_0^T {{e^2}dt} }}{{\int\limits_0^T {dt} }}$
$e_{rms}^2 = \dfrac{{\int\limits_0^T {{{({e_1}\sin \omega t + {e_2}\cos \omega t)}^2}dt} }}{{\int\limits_0^T {dt} }}$
$e_{rms}^2 = \dfrac{1}{T}\left[ {e_1^2\int\limits_0^T {({{\sin }^2}\omega t)dt + {e_1}{e_2}\int\limits_0^T {(\sin 2\omega t)dt} } + e_2^2\int\limits_0^T {({{\cos }^2}\omega t)dt} } \right]$
$e_{rms}^2 = \dfrac{1}{T}\left[ {e_1^2\int\limits_0^T {\left( {\dfrac{{1 - \cos 2\omega t}}{2}} \right)dt + {e_1}{e_2}\left[ {\dfrac{{ - \cos 2\omega t}}{{2\omega }}} \right]_0^T} + e_2^2\int\limits_0^T {\left( {\dfrac{{1 + \cos 2\omega t}}{2}} \right)} dt} \right]$
$e_{rms}^2 = \dfrac{1}{T}\left[ {\dfrac{{e_1^2}}{2}\left( {t - \dfrac{{\sin 2\omega t}}{{2\omega }}} \right)_0^T - \dfrac{{{e_1}{e_2}}}{{2\omega }}(\cos 2\omega T - \cos 0) + \dfrac{{e_2^2}}{2}\left( {t + \dfrac{{\sin 2\omega t}}{{2\omega }}} \right)_0^T} \right]$
$e_{rms}^2 = \dfrac{1}{T}\left[ {\dfrac{{e_1^2}}{2}\left[ {T - \dfrac{1}{{2\omega }}\left( {\sin 2\omega T - \sin 0} \right)} \right] - \dfrac{{{e_1}{e_2}}}{{2\omega }}\left( {\cos 2\omega T - 1} \right) + \dfrac{{e_2^2}}{2}\left[ {T + \dfrac{1}{{2\omega }}\left( {\sin 2\omega T - \sin 0} \right)} \right]} \right]$
$\because T = \dfrac{{2\pi }}{\omega }$
$e_{rms}^2 = \dfrac{1}{T}\left[ {\dfrac{{e_1^2}}{2}\left[ {\dfrac{{2\pi }}{\omega } - \dfrac{1}{{2\omega }}\left( {\sin 2\omega \dfrac{{2\pi }}{\omega } - 0} \right) - \dfrac{{{e_1}{e_2}}}{{2\omega }}\left( {\cos 2\omega \dfrac{{2\pi }}{\omega } - 1} \right) + \dfrac{{e_2^2}}{2}\left[ {\dfrac{{2\pi }}{\omega } + \dfrac{1}{{2\omega }}\left( {\sin 2\omega \dfrac{{2\pi }}{\omega }} \right)} \right]} \right]} \right]$
$e_{rms}^2 = \dfrac{1}{T}\left[ {\dfrac{{e_1^2}}{2}\left[ {\dfrac{{2\pi }}{\omega } - 0} \right] - \dfrac{{{e_1}{e_2}}}{{2\omega }}\left( {1 - 1} \right) + \dfrac{{e_2^2}}{2}\left( {\dfrac{{2\pi }}{\omega } - 0} \right)} \right]$
$\left( {\sin n\pi = 0} \right)$ where $n = 0,1,2,....$
$(\cos 4\pi = 1)$
$e_{rms}^2 = \dfrac{\omega }{{2\pi }}\left[ {\dfrac{{e_1^2}}{2} \times \dfrac{{2\pi }}{\omega } + \dfrac{{e_2^2}}{2} \times \dfrac{{2\pi }}{\omega }} \right]$
$e_{rms}^2 = \dfrac{{e_1^2 + e_2^2}}{2}$
$\boxed{{e_{rms}} = \sqrt {\dfrac{{e_1^2 + e_2^2}}{2}} }$
Hence option D is correct.
Note: We know that the mean or expectation value of sin 0 & cos 0 is 0 and ${\sin ^2}0$ & ${\cos ^2}0$ is $\dfrac{1}{2}$.
So, we can directly calculate the root mean square value of alternating voltage.
$e_{rms}^2 = < {({e_1}\sin \omega t + {e_2}\cos \omega t)^2} > $
$ = e_1^2 < {\sin ^2}\omega t > + 2{e_1}{e_2} < \sin \omega t > < \cos \omega t > + e_2^2 < {\cos ^2}\omega t > $
$e_{rms}^2 = \dfrac{{e_1^2}}{2} + 0 + \dfrac{{e_2^2}}{2}$
$e_{rms}^2 = \dfrac{{e_1^2 + e_2^2}}{2}$
$\boxed{{e_{rms}} = \sqrt {\dfrac{{e_1^2 + e_2^2}}{2}} }$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

