
Amplitude of is $\dfrac{{1 + \sqrt 3 i}}{{\sqrt 3 + i}}$ is
Answer
587.4k+ views
Hint:We simply have to multiply and divide by the conjugate of the denominator. We have to also know the complex number $i\,where\,{i^2} = - 1$
Complete step by step solution:
To find the amplitude of the function at first we have to convert this into the simplest form. then we can solve the problem. to convert this into the simplest form we have to rationalize this fraction. then we get the proper form. so the solve is written below
$z = \dfrac{{1 + \sqrt 3 i}}{{\sqrt 3 + i}}$
$ \Rightarrow \left( {\dfrac{{1 + \sqrt 3 i}}{{\sqrt 3 + i}}} \right) \times \left( {\dfrac{{\sqrt 3 - i}}{{\sqrt 3 - i}}} \right)$
$ \Rightarrow \dfrac{{\sqrt 3 + 3i - i - \sqrt {3{i^2}} }}{{{{(\sqrt 3 )}^2} - {i^2}}}$
$ \Rightarrow \dfrac{{2\sqrt 3 + 2i}}{4}$
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2}i\]
Comparing with $x + iy$ form we get
$x = \dfrac{{\sqrt 3 }}{2}\,\& \,y = \dfrac{1}{2}$
Now, amplitude of
\[\begin{gathered}
z\, = \,{\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) \\
\,\,\, = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}} \right) \\
\,\,\, = {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) \\
\,\,\, = \dfrac{\pi }{6} \\
\end{gathered} \]
Note: In the above question, conjugate of denominator is the main step to find the answer.amplitude of a function denotes an angular quantity,basically it denotes the trigonometric function tan..by inverse of tan we get the amplitude of the complex numbers.
Complete step by step solution:
To find the amplitude of the function at first we have to convert this into the simplest form. then we can solve the problem. to convert this into the simplest form we have to rationalize this fraction. then we get the proper form. so the solve is written below
$z = \dfrac{{1 + \sqrt 3 i}}{{\sqrt 3 + i}}$
$ \Rightarrow \left( {\dfrac{{1 + \sqrt 3 i}}{{\sqrt 3 + i}}} \right) \times \left( {\dfrac{{\sqrt 3 - i}}{{\sqrt 3 - i}}} \right)$
$ \Rightarrow \dfrac{{\sqrt 3 + 3i - i - \sqrt {3{i^2}} }}{{{{(\sqrt 3 )}^2} - {i^2}}}$
$ \Rightarrow \dfrac{{2\sqrt 3 + 2i}}{4}$
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2}i\]
Comparing with $x + iy$ form we get
$x = \dfrac{{\sqrt 3 }}{2}\,\& \,y = \dfrac{1}{2}$
Now, amplitude of
\[\begin{gathered}
z\, = \,{\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) \\
\,\,\, = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}} \right) \\
\,\,\, = {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) \\
\,\,\, = \dfrac{\pi }{6} \\
\end{gathered} \]
Note: In the above question, conjugate of denominator is the main step to find the answer.amplitude of a function denotes an angular quantity,basically it denotes the trigonometric function tan..by inverse of tan we get the amplitude of the complex numbers.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

