
Ammonium sulphate and ammonium selenide on heating dissociates as
${{\text{(N}{{\text{H}}_{\text{4}}}\text{)}}_{\text{2}}}\text{S(s)}\,\,\rightleftharpoons \,\text{2N}{{\text{H}}_{\text{3}}}\text{(g)}\,\text{+}\,{{\text{H}}_{\text{2}}}\text{S(g);}\,{{\text{K}}_{\text{p}}}\text{=}\,\text{9 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-3}}}\text{at}{{\text{m}}^{\text{3}}}$
${{\text{(N}{{\text{H}}_{\text{4}}}\text{)}}_{\text{2}}}\text{Se(s)}\,\,\rightleftharpoons \,\text{2N}{{\text{H}}_{\text{3}}}\text{(g)}\,\text{+}\,{{\text{H}}_{\text{2}}}\text{Se(g);}\,{{\text{K}}_{\text{p}}}\text{=}\,4.5\,\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-3}}}\text{at}{{\text{m}}^{\text{3}}}$
The total pressure over the solid mixture at the equilibrium is
(A) $\text{0}\text{.15}\,\text{atm}$
(B) $\text{0}\text{.3}\,\text{atm}$
(C) $\text{0}\text{.45}\,\text{atm}$
(D) $\text{0}\text{.6}\,\text{atm}$
Answer
558.3k+ views
Hint: The active mass of solid and pure liquids is constant quantity (unity) because it is an intensive property and does change its concentration with time.
- According to the law of mass action, the rate of a chemical reaction is directly proportional to the active masses of the reacting substances raised to the power equal to the stoichiometry coefficient in the balance chemical reaction.
${{\text{K}}_{\text{p}}}$ In this equation represents pressure equilibrium constant. The magnitude of ${{\text{K}}_{\text{p}}}$ is a measure of the extent to which the chemical reaction occurs. So, ${{\text{K}}_{\text{p}}}$ for a reaction is calculated by Applying law of mass action in the following manner –
${{\text{K}}_{\text{p}}}=\dfrac{{{\text{(}{{\text{p}}_{\text{c}}}\text{)}}^{{{\text{n}}_{\text{1}}}}}{{\text{(}{{\text{p}}_{\text{c}}}\text{)}}^{{{\text{n}}_{\text{2}}}}}}{{{\text{(}{{\text{p}}_{\text{c}}}\text{)}}^{{{\text{m}}_{\text{1}}}}}{{\text{(}{{\text{p}}_{\text{c}}}\text{)}}^{{{\text{m}}_{\text{2}}}}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\{\text{where,}\,\,\text{p = partial}\,\text{pressure}\}$
Partial pressure of any species of the reactant or product at equilibrium is $\text{p}=\dfrac{\text{moles}\,\,\text{of}\,\,\text{species}\,\,\text{at}\,\text{equilibrium}}{\text{total}\,\text{moles}}\text{ }\!\!\times\!\!\text{ }\,\text{total}\,\text{pressure}$
Complete Solution :
Supposed the partial pressure of $\text{N}{{\text{H}}_{\text{3}}}$ and ${{\text{H}}_{\text{2}}}\text{S}$ due to the dissociation of ${{\text{(N}{{\text{H}}_{\text{4}}}\text{)}}_{\text{2}}}\text{S(s)}$ are ${{\text{p}}_{\text{1}}}\,\text{atm}$ each and partial pressure of $\text{N}{{\text{H}}_{\text{3}}}$ and ${{\text{H}}_{\text{2}}}\text{Se}$ due to the dissociation of compound ${{\text{(N}{{\text{H}}_{\text{4}}}\text{)}}_{\text{2}}}\text{Se(s)}\,$are ${{\text{p}}_{2}}\,\text{atm}$
$\begin{align}
& {{\text{(N}{{\text{H}}_{\text{4}}}\text{)}}_{\text{2}}}\text{S(s)}\,\,\rightleftharpoons \,\text{2N}{{\text{H}}_{\text{3}}}\text{(g)}\,\text{+}\,{{\text{H}}_{\text{2}}}\text{S(g);}\,{{\text{K}}_{\text{p}}}\text{=}\,\text{9 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-3}}}\text{at}{{\text{m}}^{\text{3}}} \\
& \,\,\,\,\,\,\,\,\,\,\,\,{{\text{p}}_{\text{1}}}\,\,\,\,\,\,\,\,\,\,\,\,\,{{\text{p}}_{\text{1}}}
\end{align}$
$\begin{align}
& {{\text{(N}{{\text{H}}_{\text{4}}}\text{)}}_{\text{2}}}\text{Se(s)}\,\,\rightleftharpoons \,\text{2N}{{\text{H}}_{\text{3}}}\text{(g)}\,\text{+}\,{{\text{H}}_{\text{2}}}\text{Se(g);}\,{{\text{K}}_{\text{p}}}\text{=}\,4.5\,\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-3}}}\text{at}{{\text{m}}^{\text{3}}} \\
& \,\,\,\,\,\,\,\,{{\text{p}}_{\text{2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{\text{p}}_{\text{2}}}
\end{align}$
For equation first we will calculate the pressure equilibrium constant-
$\begin{align}
& {{\text{K}}_{{{\text{p}}_{1}}}}\,\text{=}\,\text{p}_{_{\text{N}{{\text{H}}_{\text{3}}}}}^{\text{2}}\text{.}\,\,{{\text{p}}_{{{\text{H}}_{\text{2}}}\text{S}}} \\
& =\,{{\text{(}{{\text{p}}_{\text{1}}}\text{+}\,{{\text{p}}_{\text{2}}}\text{)}}^{\text{2}}}\text{.}{{\text{p}}_{\text{1}}}\,\,\,\,\,\,\text{ }\!\!\{\!\!\text{ }\,{{\text{p}}_{\text{N}{{\text{H}}_{\text{3}}}}}\text{= }{{\text{p}}_{\text{1}}}\text{+}\,{{\text{p}}_{\text{2}}}\,\,\,\,\,\,\text{due}\,\text{to}\,\,\text{combined}\,\text{moles}\,\text{in}\,\text{the}\,\text{container}\} \\
& 9\times {{10}^{-3}}=\,{{\text{(}{{\text{p}}_{\text{1}}}\text{+}\,{{\text{p}}_{\text{2}}}\text{)}}^{\text{2}}}\text{.}{{\text{p}}_{\text{1}}}...........(i)
\end{align}$
- In the same manner we will calculate the pressure equilibrium constant –
$\begin{align}
& {{\text{K}}_{{{\text{p}}_{2}}}}\,\text{=}\,\text{p}_{_{\text{N}{{\text{H}}_{\text{3}}}}}^{\text{2}}\text{.}\,\,{{\text{p}}_{{{\text{H}}_{\text{2}}}\text{Se}}} \\
& =\,{{\text{(}{{\text{p}}_{\text{1}}}\text{+}\,{{\text{p}}_{\text{2}}}\text{)}}^{\text{2}}}\text{.}{{\text{p}}_{2}}\,\,\,\, \\
& 4.5\times {{10}^{-3}}=\,{{\text{(}{{\text{p}}_{\text{1}}}\text{+}\,{{\text{p}}_{\text{2}}}\text{)}}^{\text{2}}}\text{.}{{\text{p}}_{2}}...........(ii)
\end{align}$
After dividing equation (I) by equation (II) we get
\[\begin{align}
& \dfrac{\text{9 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-3}}}}{\text{4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-3}}}}\text{=}\dfrac{{{\text{(}{{\text{p}}_{\text{1}}}\text{+}{{\text{p}}_{\text{2}}}\text{)}}^{\text{2}}}\text{.}\,{{\text{p}}_{\text{1}}}}{{{\text{(}{{\text{p}}_{\text{1}}}\text{+}{{\text{p}}_{\text{2}}}\text{)}}^{\text{2}}}\text{.}\,{{\text{p}}_{\text{2}}}} \\
& \dfrac{{{\text{p}}_{\text{1}}}}{{{\text{p}}_{\text{2}}}}\text{=}\dfrac{\text{9}}{\text{4}\text{.5}}\text{=}\dfrac{\text{2}}{\text{1}} \\
& \therefore \,\,\,\,\,{{\text{p}}_{\text{1}}}\text{=}\,\,\text{2}{{\text{p}}_{\text{2}}}\,\,\,................(iii)
\end{align}\]
After putting the value of equation (III) into equation (I) we get
$\begin{align}
& 9\times {{10}^{-3}}=\,{{\text{(}{{\text{p}}_{\text{1}}}\text{+}\,{{\text{p}}_{\text{2}}}\text{)}}^{\text{2}}}\text{.}{{\text{p}}_{\text{1}}} \\
& 9\times {{10}^{-3}}=\,{{\text{(2}{{\text{p}}_{2}}\text{+}\,{{\text{p}}_{\text{2}}}\text{)}}^{\text{2}}}\text{.2}{{\text{p}}_{2}} \\
& 18\text{p}_{2}^{3}=\,9\times {{10}^{-3}} \\
& {{\text{p}}_{2}}=\,0.8\times {{10}^{-1}}=\,0.0\text{8}\,\text{atm}
\end{align}$
So, pressure over the solid mixture is -
\[\begin{align}
& {{\text{p}}_{\text{T}}}=\,2({{\text{p}}_{1}}+{{\text{p}}_{2}}) \\
& =\,2(3{{\text{p}}_{2}})\,\,\,\,\,\,\,\{\because \,{{\text{p}}_{1}}=\,2{{\text{p}}_{2}}\} \\
& =\,6\times 0.08 \\
& {{\text{p}}_{\text{T}}}=\,0.4\text{5}\,\text{atm}
\end{align}\]
So, the correct answer is “Option C”.
Note: In this given question two solids are taken together in a closed container, and both the solids decompose to gives gases $\text{N}{{\text{H}}_{\text{3}}}$, ${{\text{H}}_{\text{2}}}\text{S}$ and ${{\text{H}}_{\text{2}}}\text{Se}$. As the gas $\text{N}{{\text{H}}_{\text{3}}}$ is the common gas in the dissociation of solids, so the dissociation of both the solids will be suppressed.
- According to the law of mass action, the rate of a chemical reaction is directly proportional to the active masses of the reacting substances raised to the power equal to the stoichiometry coefficient in the balance chemical reaction.
${{\text{K}}_{\text{p}}}$ In this equation represents pressure equilibrium constant. The magnitude of ${{\text{K}}_{\text{p}}}$ is a measure of the extent to which the chemical reaction occurs. So, ${{\text{K}}_{\text{p}}}$ for a reaction is calculated by Applying law of mass action in the following manner –
${{\text{K}}_{\text{p}}}=\dfrac{{{\text{(}{{\text{p}}_{\text{c}}}\text{)}}^{{{\text{n}}_{\text{1}}}}}{{\text{(}{{\text{p}}_{\text{c}}}\text{)}}^{{{\text{n}}_{\text{2}}}}}}{{{\text{(}{{\text{p}}_{\text{c}}}\text{)}}^{{{\text{m}}_{\text{1}}}}}{{\text{(}{{\text{p}}_{\text{c}}}\text{)}}^{{{\text{m}}_{\text{2}}}}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\{\text{where,}\,\,\text{p = partial}\,\text{pressure}\}$
Partial pressure of any species of the reactant or product at equilibrium is $\text{p}=\dfrac{\text{moles}\,\,\text{of}\,\,\text{species}\,\,\text{at}\,\text{equilibrium}}{\text{total}\,\text{moles}}\text{ }\!\!\times\!\!\text{ }\,\text{total}\,\text{pressure}$
Complete Solution :
Supposed the partial pressure of $\text{N}{{\text{H}}_{\text{3}}}$ and ${{\text{H}}_{\text{2}}}\text{S}$ due to the dissociation of ${{\text{(N}{{\text{H}}_{\text{4}}}\text{)}}_{\text{2}}}\text{S(s)}$ are ${{\text{p}}_{\text{1}}}\,\text{atm}$ each and partial pressure of $\text{N}{{\text{H}}_{\text{3}}}$ and ${{\text{H}}_{\text{2}}}\text{Se}$ due to the dissociation of compound ${{\text{(N}{{\text{H}}_{\text{4}}}\text{)}}_{\text{2}}}\text{Se(s)}\,$are ${{\text{p}}_{2}}\,\text{atm}$
$\begin{align}
& {{\text{(N}{{\text{H}}_{\text{4}}}\text{)}}_{\text{2}}}\text{S(s)}\,\,\rightleftharpoons \,\text{2N}{{\text{H}}_{\text{3}}}\text{(g)}\,\text{+}\,{{\text{H}}_{\text{2}}}\text{S(g);}\,{{\text{K}}_{\text{p}}}\text{=}\,\text{9 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-3}}}\text{at}{{\text{m}}^{\text{3}}} \\
& \,\,\,\,\,\,\,\,\,\,\,\,{{\text{p}}_{\text{1}}}\,\,\,\,\,\,\,\,\,\,\,\,\,{{\text{p}}_{\text{1}}}
\end{align}$
$\begin{align}
& {{\text{(N}{{\text{H}}_{\text{4}}}\text{)}}_{\text{2}}}\text{Se(s)}\,\,\rightleftharpoons \,\text{2N}{{\text{H}}_{\text{3}}}\text{(g)}\,\text{+}\,{{\text{H}}_{\text{2}}}\text{Se(g);}\,{{\text{K}}_{\text{p}}}\text{=}\,4.5\,\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-3}}}\text{at}{{\text{m}}^{\text{3}}} \\
& \,\,\,\,\,\,\,\,{{\text{p}}_{\text{2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{\text{p}}_{\text{2}}}
\end{align}$
For equation first we will calculate the pressure equilibrium constant-
$\begin{align}
& {{\text{K}}_{{{\text{p}}_{1}}}}\,\text{=}\,\text{p}_{_{\text{N}{{\text{H}}_{\text{3}}}}}^{\text{2}}\text{.}\,\,{{\text{p}}_{{{\text{H}}_{\text{2}}}\text{S}}} \\
& =\,{{\text{(}{{\text{p}}_{\text{1}}}\text{+}\,{{\text{p}}_{\text{2}}}\text{)}}^{\text{2}}}\text{.}{{\text{p}}_{\text{1}}}\,\,\,\,\,\,\text{ }\!\!\{\!\!\text{ }\,{{\text{p}}_{\text{N}{{\text{H}}_{\text{3}}}}}\text{= }{{\text{p}}_{\text{1}}}\text{+}\,{{\text{p}}_{\text{2}}}\,\,\,\,\,\,\text{due}\,\text{to}\,\,\text{combined}\,\text{moles}\,\text{in}\,\text{the}\,\text{container}\} \\
& 9\times {{10}^{-3}}=\,{{\text{(}{{\text{p}}_{\text{1}}}\text{+}\,{{\text{p}}_{\text{2}}}\text{)}}^{\text{2}}}\text{.}{{\text{p}}_{\text{1}}}...........(i)
\end{align}$
- In the same manner we will calculate the pressure equilibrium constant –
$\begin{align}
& {{\text{K}}_{{{\text{p}}_{2}}}}\,\text{=}\,\text{p}_{_{\text{N}{{\text{H}}_{\text{3}}}}}^{\text{2}}\text{.}\,\,{{\text{p}}_{{{\text{H}}_{\text{2}}}\text{Se}}} \\
& =\,{{\text{(}{{\text{p}}_{\text{1}}}\text{+}\,{{\text{p}}_{\text{2}}}\text{)}}^{\text{2}}}\text{.}{{\text{p}}_{2}}\,\,\,\, \\
& 4.5\times {{10}^{-3}}=\,{{\text{(}{{\text{p}}_{\text{1}}}\text{+}\,{{\text{p}}_{\text{2}}}\text{)}}^{\text{2}}}\text{.}{{\text{p}}_{2}}...........(ii)
\end{align}$
After dividing equation (I) by equation (II) we get
\[\begin{align}
& \dfrac{\text{9 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-3}}}}{\text{4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-3}}}}\text{=}\dfrac{{{\text{(}{{\text{p}}_{\text{1}}}\text{+}{{\text{p}}_{\text{2}}}\text{)}}^{\text{2}}}\text{.}\,{{\text{p}}_{\text{1}}}}{{{\text{(}{{\text{p}}_{\text{1}}}\text{+}{{\text{p}}_{\text{2}}}\text{)}}^{\text{2}}}\text{.}\,{{\text{p}}_{\text{2}}}} \\
& \dfrac{{{\text{p}}_{\text{1}}}}{{{\text{p}}_{\text{2}}}}\text{=}\dfrac{\text{9}}{\text{4}\text{.5}}\text{=}\dfrac{\text{2}}{\text{1}} \\
& \therefore \,\,\,\,\,{{\text{p}}_{\text{1}}}\text{=}\,\,\text{2}{{\text{p}}_{\text{2}}}\,\,\,................(iii)
\end{align}\]
After putting the value of equation (III) into equation (I) we get
$\begin{align}
& 9\times {{10}^{-3}}=\,{{\text{(}{{\text{p}}_{\text{1}}}\text{+}\,{{\text{p}}_{\text{2}}}\text{)}}^{\text{2}}}\text{.}{{\text{p}}_{\text{1}}} \\
& 9\times {{10}^{-3}}=\,{{\text{(2}{{\text{p}}_{2}}\text{+}\,{{\text{p}}_{\text{2}}}\text{)}}^{\text{2}}}\text{.2}{{\text{p}}_{2}} \\
& 18\text{p}_{2}^{3}=\,9\times {{10}^{-3}} \\
& {{\text{p}}_{2}}=\,0.8\times {{10}^{-1}}=\,0.0\text{8}\,\text{atm}
\end{align}$
So, pressure over the solid mixture is -
\[\begin{align}
& {{\text{p}}_{\text{T}}}=\,2({{\text{p}}_{1}}+{{\text{p}}_{2}}) \\
& =\,2(3{{\text{p}}_{2}})\,\,\,\,\,\,\,\{\because \,{{\text{p}}_{1}}=\,2{{\text{p}}_{2}}\} \\
& =\,6\times 0.08 \\
& {{\text{p}}_{\text{T}}}=\,0.4\text{5}\,\text{atm}
\end{align}\]
So, the correct answer is “Option C”.
Note: In this given question two solids are taken together in a closed container, and both the solids decompose to gives gases $\text{N}{{\text{H}}_{\text{3}}}$, ${{\text{H}}_{\text{2}}}\text{S}$ and ${{\text{H}}_{\text{2}}}\text{Se}$. As the gas $\text{N}{{\text{H}}_{\text{3}}}$ is the common gas in the dissociation of solids, so the dissociation of both the solids will be suppressed.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

