
Amit scored 10 marks less than Joseph in an examination. Ali scored 15 marks more than joseph. In total they scored 245 marks. What was Amit’s score?
Answer
577.8k+ views
Hint:
As we know in our question it is given that Amit’s scored 10 marks less than Joseph. It means Amit score is equal to Joseph Score minus 10 . Let’s take a variable x for joseph marks and Amit marks is x-10. Ali marks is 15 more than joseph so the linear equation for it is +15 . Hence for total marks you have to add marks of all Amit’s, Joseph and Ali.
Complete step by step solution:
Suppose Joseph marks in examination is x
Step 1: let’s start as we know marks obtained by Amit is 10 less than Joseph marks so linear equation is
= $x - 10$
Secondly, marks obtained by Ali are 15 more than Joseph marks. Hence linear equation for it is
= $x + 15$
Step 2: Let's move toward second part of this question Total marks obtained by Ali, Amit and Joseph is
\[\begin{array}{l}
& = x - 10 + x + x + 15\\
& = 3x + 5\\
3x + 5 & = 245\\
\,\,\,\,\,\,\,\,3x & = 240\\
\,\,\,\,\,\,\,\,\,\,\,\,x & = 80
\end{array}\]
Hence marks obtained by Joseph are 80 and marks obtained by Amit are 70.
Marks obtained by Amit’s is 70
Note:
In this type of you must know how to frame linear equations from word problems. Special attention must give on more than or less than. In case of more than you always add and in case of less than you always subtract. For making mathematical equations you have to suppose some variable like x, y, z.
As we know in our question it is given that Amit’s scored 10 marks less than Joseph. It means Amit score is equal to Joseph Score minus 10 . Let’s take a variable x for joseph marks and Amit marks is x-10. Ali marks is 15 more than joseph so the linear equation for it is +15 . Hence for total marks you have to add marks of all Amit’s, Joseph and Ali.
Complete step by step solution:
Suppose Joseph marks in examination is x
Step 1: let’s start as we know marks obtained by Amit is 10 less than Joseph marks so linear equation is
= $x - 10$
Secondly, marks obtained by Ali are 15 more than Joseph marks. Hence linear equation for it is
= $x + 15$
Step 2: Let's move toward second part of this question Total marks obtained by Ali, Amit and Joseph is
\[\begin{array}{l}
& = x - 10 + x + x + 15\\
& = 3x + 5\\
3x + 5 & = 245\\
\,\,\,\,\,\,\,\,3x & = 240\\
\,\,\,\,\,\,\,\,\,\,\,\,x & = 80
\end{array}\]
Hence marks obtained by Joseph are 80 and marks obtained by Amit are 70.
Marks obtained by Amit’s is 70
Note:
In this type of you must know how to frame linear equations from word problems. Special attention must give on more than or less than. In case of more than you always add and in case of less than you always subtract. For making mathematical equations you have to suppose some variable like x, y, z.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

