
Amit has five friends: 3 girls and 2 boys. Amit’s wife also has 5 friends: 3 boys and 2 girls. In how many maximum numbers of different ways can they invite 2 boys and 2 girls such that two of them are Amit’s friends and two are his wife’s?
(a)24
(b)38
(c)46
(d)58
Answer
604.8k+ views
Hint: A combination is the number of possible arrangements in a collection of items. The formula for combinations is ${}^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!}$ , where n represents the number of items, and r represents the number of items being chosen at a time.
Complete step-by-step answer:
Given that,
Amit has five friends: 3 girls and 2 boys and Amit’s wife also has 5 friends: 3 boys and 2 girls.
Here, we want to find maximum numbers of different ways they can invite 2 boys and 2 girls such that two of them are Amit’s friends and two are his wife’s.
There can be three cases.
Case I - One boy & one girl from Amit friend and one boy and one girl from his wife friend.
Number of ways $={}^{2}{{C}_{1}}\times {}^{3}{{C}_{1}}\times {}^{3}{{C}_{1}}\times {}^{2}{{C}_{1}}=36$
Case II- Two girls from Amit friend and two boys from his wife friend.
Number of ways \[={}^{3}{{C}_{2}}\times {}^{3}{{C}_{2}}=9\]
Case III- Two boys from Amit friend and three girls from his wife friend
Number of ways \[={}^{2}{{C}_{2}}\times {}^{2}{{C}_{2}}=1\]
Total number of ways = 36 + 9 + 1 = 46.
Hence maximum numbers of different ways are 46.
Therefore, the correct option for the given question is option (c).
Note: The difference between combinations and permutations is ordering. With permutations you care about the order of the elements, whereas with combinations you do not care about the order of the elements.
Complete step-by-step answer:
Given that,
Amit has five friends: 3 girls and 2 boys and Amit’s wife also has 5 friends: 3 boys and 2 girls.
Here, we want to find maximum numbers of different ways they can invite 2 boys and 2 girls such that two of them are Amit’s friends and two are his wife’s.
There can be three cases.
Case I - One boy & one girl from Amit friend and one boy and one girl from his wife friend.
Number of ways $={}^{2}{{C}_{1}}\times {}^{3}{{C}_{1}}\times {}^{3}{{C}_{1}}\times {}^{2}{{C}_{1}}=36$
Case II- Two girls from Amit friend and two boys from his wife friend.
Number of ways \[={}^{3}{{C}_{2}}\times {}^{3}{{C}_{2}}=9\]
Case III- Two boys from Amit friend and three girls from his wife friend
Number of ways \[={}^{2}{{C}_{2}}\times {}^{2}{{C}_{2}}=1\]
Total number of ways = 36 + 9 + 1 = 46.
Hence maximum numbers of different ways are 46.
Therefore, the correct option for the given question is option (c).
Note: The difference between combinations and permutations is ordering. With permutations you care about the order of the elements, whereas with combinations you do not care about the order of the elements.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

What are luminous and Non luminous objects class 10 physics CBSE

