
Although chlorine is an electron withdrawing group, yet it is ortho, para-directing in electrophilic aromatic substitution reaction. Explain why it is so?
Answer
519.6k+ views
4 likes
Hint: Chlorine donates lone pairs of electrons to the aromatic ring and hence it increases the electron density at Ortho and para positions and the lone pair of an electron in chlorine atom stabilizes the intermediate carbocation due to resonance.
Complete step by step solution:
The -I effect of chlorine withdraws electrons from the Benzene ring and Hence tends to destabilize the intermediate carbocation formed during Electrophilic substitution.
Conversely, Chlorine donates lone pairs of electrons to the aromatic ring
Hence it increases the electron density at Ortho and para positions
The lone pair of an electron in a chlorine atom stabilizes the intermediate carbocation due to resonance.
Since- I effect of Chlorine is stronger than it's +R effect hence Cl causes net deactivation.
Further Resonance effect opposes the inductive effect, it makes deactivation less at Ortho and para positions.
Since in Chlorobenzene, reactivity is controlled by stronger -I effect while the orientation of incoming substituent group is controlled by a weaker resonance effect.
Chlorine withdraws electrons through inductive effect and releases electrons through resonance.
Hence, chlorine is ortho, para-directing in electrophilic aromatic substitution reaction.
Note: Students can confuse between -I and +R effects of chlorine atoms on benzene rings. Make sure to remember that -I of chlorine is much stronger than +R effect and it takes place in case of chlorine otherwise +R effect is much stronger than -I effect.
Complete step by step solution:
The -I effect of chlorine withdraws electrons from the Benzene ring and Hence tends to destabilize the intermediate carbocation formed during Electrophilic substitution.
Conversely, Chlorine donates lone pairs of electrons to the aromatic ring
Hence it increases the electron density at Ortho and para positions
The lone pair of an electron in a chlorine atom stabilizes the intermediate carbocation due to resonance.
Since- I effect of Chlorine is stronger than it's +R effect hence Cl causes net deactivation.
Further Resonance effect opposes the inductive effect, it makes deactivation less at Ortho and para positions.
Since in Chlorobenzene, reactivity is controlled by stronger -I effect while the orientation of incoming substituent group is controlled by a weaker resonance effect.
Chlorine withdraws electrons through inductive effect and releases electrons through resonance.
Hence, chlorine is ortho, para-directing in electrophilic aromatic substitution reaction.
Note: Students can confuse between -I and +R effects of chlorine atoms on benzene rings. Make sure to remember that -I of chlorine is much stronger than +R effect and it takes place in case of chlorine otherwise +R effect is much stronger than -I effect.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
