Answer
Verified
474k+ views
Hint: First of all, take Aftab’s age as A years and his daughter’s age as D. Then find their ages seven years ago and 3 years later. Use the conditions given in the question to find the values of A and D.
Complete step-by-step answer:
We are given that, seven years ago, Aftab was 7 times as old as his daughter was then. Also, three years from now, he shall be three times as old as his daughter would be. We have to represent this situation algebraically.
Let us assume that the present age of Aftab is A years. Also, let us assume that the present age of his daughter is D years.
So, seven years ago, the age of Aftab = (A – 7) years
Seven years ago, the age of his daughter = (D – 7) years
Now we are given that 7 years ago, Aftab was 7 times as old as his daughter, so we get,
(Aftab’s age seven years ago) = 7 (His daughter’s age seven years ago)
By substituting the value of LHS and RHS, we get,
\[\left( A7 \right)=7\left( D7 \right)\]
By simplifying the above equation, we get,
\[A-7=7D-49\]
Or, \[7D-A=49-7\]
\[\Rightarrow 7D-A=42....\left( i \right)\]
Also, three years later, the age of Aftab would be = (A + 3) years.
Three years later, the age of his daughter would be = (D + 3) years.
We are given that, three years from now, Aftab will be 3 times as old as his daughter will be. So, we will get,
(Aftab’s age after 3 years) = 3 (His daughter’s age after 3 years)
By substituting the value of LHS and RHS, we get,
\[\left( A+3 \right)=3\left( D+3 \right)\]
By simplifying the above equation, we get,
\[\left( A+3 \right)=3D+9\]
Or, \[A-3D=6....\left( ii \right)\]
So, we get two algebraic equations involving their ages as,
\[\begin{align}
& 7D-A=42...\left( i \right) \\
& A-3D=6....\left( ii \right) \\
\end{align}\]
Now by adding equation (i) and (ii), we get,
\[\left( 7D-A \right)+\left( A-3D \right)=42+6\]
By simplifying the above equation and canceling the terms, we get,
\[\Rightarrow 4D=48\]
By dividing 4 on both sides of the above equation, we get,
\[\Rightarrow D=12\text{ years}\]
By substituting D = 12 in equation (i), we get,
\[\begin{align}
& 7\left( 12 \right)-A=42 \\
& 84-A=42 \\
& A=84-42 \\
\end{align}\]
So, we get, A = 42 years.
Therefore, we get Aftab’s and his daughter’s age as 42 years and 12 years respectively.
Note: Many students make the mistake while writing the equation for the given conditions because they often write the ages of the people some years ago and some years later incorrectly. Also, students often make the mistake of writing the age of one person properly while the other person incorrectly. So this must be taken care of. Whenever there is a condition given for ‘m’ years ago, then subtract ‘n’’ from the age of each person while if it is for ‘n’ years later, then add ‘n’ to the age of each person
Complete step-by-step answer:
We are given that, seven years ago, Aftab was 7 times as old as his daughter was then. Also, three years from now, he shall be three times as old as his daughter would be. We have to represent this situation algebraically.
Let us assume that the present age of Aftab is A years. Also, let us assume that the present age of his daughter is D years.
So, seven years ago, the age of Aftab = (A – 7) years
Seven years ago, the age of his daughter = (D – 7) years
Now we are given that 7 years ago, Aftab was 7 times as old as his daughter, so we get,
(Aftab’s age seven years ago) = 7 (His daughter’s age seven years ago)
By substituting the value of LHS and RHS, we get,
\[\left( A7 \right)=7\left( D7 \right)\]
By simplifying the above equation, we get,
\[A-7=7D-49\]
Or, \[7D-A=49-7\]
\[\Rightarrow 7D-A=42....\left( i \right)\]
Also, three years later, the age of Aftab would be = (A + 3) years.
Three years later, the age of his daughter would be = (D + 3) years.
We are given that, three years from now, Aftab will be 3 times as old as his daughter will be. So, we will get,
(Aftab’s age after 3 years) = 3 (His daughter’s age after 3 years)
By substituting the value of LHS and RHS, we get,
\[\left( A+3 \right)=3\left( D+3 \right)\]
By simplifying the above equation, we get,
\[\left( A+3 \right)=3D+9\]
Or, \[A-3D=6....\left( ii \right)\]
So, we get two algebraic equations involving their ages as,
\[\begin{align}
& 7D-A=42...\left( i \right) \\
& A-3D=6....\left( ii \right) \\
\end{align}\]
Now by adding equation (i) and (ii), we get,
\[\left( 7D-A \right)+\left( A-3D \right)=42+6\]
By simplifying the above equation and canceling the terms, we get,
\[\Rightarrow 4D=48\]
By dividing 4 on both sides of the above equation, we get,
\[\Rightarrow D=12\text{ years}\]
By substituting D = 12 in equation (i), we get,
\[\begin{align}
& 7\left( 12 \right)-A=42 \\
& 84-A=42 \\
& A=84-42 \\
\end{align}\]
So, we get, A = 42 years.
Therefore, we get Aftab’s and his daughter’s age as 42 years and 12 years respectively.
Note: Many students make the mistake while writing the equation for the given conditions because they often write the ages of the people some years ago and some years later incorrectly. Also, students often make the mistake of writing the age of one person properly while the other person incorrectly. So this must be taken care of. Whenever there is a condition given for ‘m’ years ago, then subtract ‘n’’ from the age of each person while if it is for ‘n’ years later, then add ‘n’ to the age of each person
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE