
Addition of HBr to propene yields 2-bromopropane, while in the presence of benzoyl peroxide, the same reaction yields 1-bromopropane. Explain and give mechanism.
Answer
494.3k+ views
Hint: It is found that addition of HBr to propene yields 2-bromopropane in accordance with Markovnikov’s rule. Whereas, in the presence of benzoyl peroxide, the same reaction yields 1-bromopropane in accordance with anti-Markovnikov’s rule.
Complete Step by step solution:
- Firstly let’s discuss about formation of 2-bromopropane:
Addition of HBr to propene yields. This reaction is in accordance with Markovnikov’s rule. We can see that it is basically an ionic electrophilic addition reaction in which the electrophile $({{H}^{+}})$ adds to form a more stable ${{2}^{\circ }}$ carbocation. And in the second reaction, it is found that the nucleophile $\left( B{{r}^{-}} \right)$ fastly attacks carbocation to form 2-bromopropane. We can see the mechanism:
\[H-Br\rightleftarrows {{H}^{+}}+B{{r}^{-}}\]
\[C{{H}_{3}}C{{H}^{+}}C{{H}_{3}}+B{{r}^{-}}\to C{{H}_{3}}CHBrC{{H}_{3}}\]
- Let's discuss about formation of 1-bromopropane:
In the presence of benzoyl peroxide, it is found that the same reaction yields 1-bromopropane. This reaction is in accordance with anti-Markovnikov’s rule. We can see that this reaction involves a free radical mechanism. It is found that, as a result of the action of benzoyl peroxide on HBr or we can say by the addition of HBr to propene in the presence of benzoyl peroxide, Br-free radical is obtained. We can see the reaction:
\[2{{C}_{6}}{{H}_{5}}CO{{O}^{\bullet }}\to 2{{C}_{6}}^{\bullet }{{H}_{5}}+2C{{O}_{2}}\]
\[{{C}_{6}}^{\bullet }{{H}_{5}}+H-Br\to {{C}_{6}}{{H}_{6}}+B{{r}^{\bullet }}\]
The Br-free radical further adds to propene to form the more stable ${{2}^{\circ }}$free radical:
\[C{{H}_{3}}CH=C{{H}_{2}}+Br\xrightarrow{slow}C{{H}_{3}}C{{H}^{\bullet }}C{{H}_{2}}Br\]
Now, free radical that is obtained rapidly abstracts a hydrogen atom from HBr to form 1-bromopropane:
\[C{{H}_{3}}C{{H}^{\bullet }}C{{H}_{2}}Br+HBr\xrightarrow{fast}C{{H}_{3}}C{{H}_{2}}C{{H}_{2}}Br+B{{r}^{\bullet }}\]
Note: - We can see here that the main difference in Markovnikov’s rule and anti-Markovnikov’s rule is Markovnikov’s rule proceeds through an ionic mechanism and involves the formation of intermediate carbocation.
- Whereas, anti-Markovnikov’s rule proceeds through free radical mechanisms and involves the formation of primary and secondary free radicals.
Complete Step by step solution:
- Firstly let’s discuss about formation of 2-bromopropane:
Addition of HBr to propene yields. This reaction is in accordance with Markovnikov’s rule. We can see that it is basically an ionic electrophilic addition reaction in which the electrophile $({{H}^{+}})$ adds to form a more stable ${{2}^{\circ }}$ carbocation. And in the second reaction, it is found that the nucleophile $\left( B{{r}^{-}} \right)$ fastly attacks carbocation to form 2-bromopropane. We can see the mechanism:
\[H-Br\rightleftarrows {{H}^{+}}+B{{r}^{-}}\]
\[C{{H}_{3}}C{{H}^{+}}C{{H}_{3}}+B{{r}^{-}}\to C{{H}_{3}}CHBrC{{H}_{3}}\]
- Let's discuss about formation of 1-bromopropane:
In the presence of benzoyl peroxide, it is found that the same reaction yields 1-bromopropane. This reaction is in accordance with anti-Markovnikov’s rule. We can see that this reaction involves a free radical mechanism. It is found that, as a result of the action of benzoyl peroxide on HBr or we can say by the addition of HBr to propene in the presence of benzoyl peroxide, Br-free radical is obtained. We can see the reaction:
\[2{{C}_{6}}{{H}_{5}}CO{{O}^{\bullet }}\to 2{{C}_{6}}^{\bullet }{{H}_{5}}+2C{{O}_{2}}\]
\[{{C}_{6}}^{\bullet }{{H}_{5}}+H-Br\to {{C}_{6}}{{H}_{6}}+B{{r}^{\bullet }}\]
The Br-free radical further adds to propene to form the more stable ${{2}^{\circ }}$free radical:
\[C{{H}_{3}}CH=C{{H}_{2}}+Br\xrightarrow{slow}C{{H}_{3}}C{{H}^{\bullet }}C{{H}_{2}}Br\]
Now, free radical that is obtained rapidly abstracts a hydrogen atom from HBr to form 1-bromopropane:
\[C{{H}_{3}}C{{H}^{\bullet }}C{{H}_{2}}Br+HBr\xrightarrow{fast}C{{H}_{3}}C{{H}_{2}}C{{H}_{2}}Br+B{{r}^{\bullet }}\]
Note: - We can see here that the main difference in Markovnikov’s rule and anti-Markovnikov’s rule is Markovnikov’s rule proceeds through an ionic mechanism and involves the formation of intermediate carbocation.
- Whereas, anti-Markovnikov’s rule proceeds through free radical mechanisms and involves the formation of primary and secondary free radicals.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

