
Addition of HBr to propene yields 2-bromopropane, while in the presence of benzoyl peroxide, the same reaction yields 1-bromopropane. Explain and give mechanism.
Answer
501.8k+ views
Hint: It is found that addition of HBr to propene yields 2-bromopropane in accordance with Markovnikov’s rule. Whereas, in the presence of benzoyl peroxide, the same reaction yields 1-bromopropane in accordance with anti-Markovnikov’s rule.
Complete Step by step solution:
- Firstly let’s discuss about formation of 2-bromopropane:
Addition of HBr to propene yields. This reaction is in accordance with Markovnikov’s rule. We can see that it is basically an ionic electrophilic addition reaction in which the electrophile $({{H}^{+}})$ adds to form a more stable ${{2}^{\circ }}$ carbocation. And in the second reaction, it is found that the nucleophile $\left( B{{r}^{-}} \right)$ fastly attacks carbocation to form 2-bromopropane. We can see the mechanism:
\[H-Br\rightleftarrows {{H}^{+}}+B{{r}^{-}}\]
\[C{{H}_{3}}C{{H}^{+}}C{{H}_{3}}+B{{r}^{-}}\to C{{H}_{3}}CHBrC{{H}_{3}}\]
- Let's discuss about formation of 1-bromopropane:
In the presence of benzoyl peroxide, it is found that the same reaction yields 1-bromopropane. This reaction is in accordance with anti-Markovnikov’s rule. We can see that this reaction involves a free radical mechanism. It is found that, as a result of the action of benzoyl peroxide on HBr or we can say by the addition of HBr to propene in the presence of benzoyl peroxide, Br-free radical is obtained. We can see the reaction:
\[2{{C}_{6}}{{H}_{5}}CO{{O}^{\bullet }}\to 2{{C}_{6}}^{\bullet }{{H}_{5}}+2C{{O}_{2}}\]
\[{{C}_{6}}^{\bullet }{{H}_{5}}+H-Br\to {{C}_{6}}{{H}_{6}}+B{{r}^{\bullet }}\]
The Br-free radical further adds to propene to form the more stable ${{2}^{\circ }}$free radical:
\[C{{H}_{3}}CH=C{{H}_{2}}+Br\xrightarrow{slow}C{{H}_{3}}C{{H}^{\bullet }}C{{H}_{2}}Br\]
Now, free radical that is obtained rapidly abstracts a hydrogen atom from HBr to form 1-bromopropane:
\[C{{H}_{3}}C{{H}^{\bullet }}C{{H}_{2}}Br+HBr\xrightarrow{fast}C{{H}_{3}}C{{H}_{2}}C{{H}_{2}}Br+B{{r}^{\bullet }}\]
Note: - We can see here that the main difference in Markovnikov’s rule and anti-Markovnikov’s rule is Markovnikov’s rule proceeds through an ionic mechanism and involves the formation of intermediate carbocation.
- Whereas, anti-Markovnikov’s rule proceeds through free radical mechanisms and involves the formation of primary and secondary free radicals.
Complete Step by step solution:
- Firstly let’s discuss about formation of 2-bromopropane:
Addition of HBr to propene yields. This reaction is in accordance with Markovnikov’s rule. We can see that it is basically an ionic electrophilic addition reaction in which the electrophile $({{H}^{+}})$ adds to form a more stable ${{2}^{\circ }}$ carbocation. And in the second reaction, it is found that the nucleophile $\left( B{{r}^{-}} \right)$ fastly attacks carbocation to form 2-bromopropane. We can see the mechanism:
\[H-Br\rightleftarrows {{H}^{+}}+B{{r}^{-}}\]
\[C{{H}_{3}}C{{H}^{+}}C{{H}_{3}}+B{{r}^{-}}\to C{{H}_{3}}CHBrC{{H}_{3}}\]
- Let's discuss about formation of 1-bromopropane:
In the presence of benzoyl peroxide, it is found that the same reaction yields 1-bromopropane. This reaction is in accordance with anti-Markovnikov’s rule. We can see that this reaction involves a free radical mechanism. It is found that, as a result of the action of benzoyl peroxide on HBr or we can say by the addition of HBr to propene in the presence of benzoyl peroxide, Br-free radical is obtained. We can see the reaction:
\[2{{C}_{6}}{{H}_{5}}CO{{O}^{\bullet }}\to 2{{C}_{6}}^{\bullet }{{H}_{5}}+2C{{O}_{2}}\]
\[{{C}_{6}}^{\bullet }{{H}_{5}}+H-Br\to {{C}_{6}}{{H}_{6}}+B{{r}^{\bullet }}\]
The Br-free radical further adds to propene to form the more stable ${{2}^{\circ }}$free radical:
\[C{{H}_{3}}CH=C{{H}_{2}}+Br\xrightarrow{slow}C{{H}_{3}}C{{H}^{\bullet }}C{{H}_{2}}Br\]
Now, free radical that is obtained rapidly abstracts a hydrogen atom from HBr to form 1-bromopropane:
\[C{{H}_{3}}C{{H}^{\bullet }}C{{H}_{2}}Br+HBr\xrightarrow{fast}C{{H}_{3}}C{{H}_{2}}C{{H}_{2}}Br+B{{r}^{\bullet }}\]
Note: - We can see here that the main difference in Markovnikov’s rule and anti-Markovnikov’s rule is Markovnikov’s rule proceeds through an ionic mechanism and involves the formation of intermediate carbocation.
- Whereas, anti-Markovnikov’s rule proceeds through free radical mechanisms and involves the formation of primary and secondary free radicals.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

