
Absolute value of sum of roots of the equation
$ \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{2x + 3}&{3x + 4}&{4x + 5} \\
{3x + 5}&{5x + 8}&{10x + 17}
\end{array}} \right| = 0 $ is____.
Answer
551.1k+ views
Hint: Firstly evaluate the given determinant by using the row transformations and equate it to zero and then find the roots of the equation. Then add all the roots and take its absolute value.
Complete step-by-step answer:
Given: The equation is given is
$ \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{2x + 3}&{3x + 4}&{4x + 5} \\
{3x + 5}&{5x + 8}&{10x + 17}
\end{array}} \right| = 0 $ .
Firstly evaluate the determinant by using the row transformations. Firstly use the transformation as $ {R_3} \to {R_3} - {R_2} $ it gives:
$ \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{2x + 3}&{3x + 4}&{4x + 5} \\
{3x + 5}&{5x + 8}&{10x + 17}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{2x + 3}&{3x + 4}&{4x + 5} \\
{x + 2}&{2\left( {x + 2} \right)}&{6\left( {x + 2} \right)}
\end{array}} \right| $
Now use the transformation $ {R_2} \to {R_2} - {R_1} $ on the determinant:
$ \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{2x + 3}&{3x + 4}&{4x + 5} \\
{x + 2}&{2\left( {x + 2} \right)}&{6\left( {x + 2} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{x + 1}&{x + 1}&{x + 1} \\
{x + 2}&{2\left( {x + 2} \right)}&{6\left( {x + 2} \right)}
\end{array}} \right| $
Now take $ x + 1 $ and $ x + 2 $ common from second and third row respectively.
$ \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{x + 1}&{x + 1}&{x + 1} \\
{x + 2}&{2\left( {x + 2} \right)}&{6\left( {x + 2} \right)}
\end{array}} \right| = \left( {x + 1} \right)\left( {x + 2} \right)\left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
1&1&1 \\
1&2&6
\end{array}} \right| $
Now evaluate the determinant:
$
\left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
1&1&1 \\
1&2&6
\end{array}} \right| = 1\left( {\left( {2x + 3} \right) \times 1 - \left( {3x + 4} \right) \times 1} \right) - 2\left( {\left( {x + 2} \right) \times 1 - \left( {3x + 4} \right) \times 1} \right) + 6\left( {\left( {x + 2} \right) \times 1 - \left( {2x + 3} \right) \times 1} \right) \\
= 1\left( {2x + 3 - 3x - 4} \right) - 2\left( {x + 2 - 3x - 4} \right) + 6\left( {x + 2 - 2x - 3} \right) \\
= - x - 1 - 2\left( { - 2x - 2} \right) + 6\left( { - x - 1} \right) \\
= - x - 1 + 4x + 4 - 6x - 6 \\
= - 3x - 3 \\
$
So, the value of $ \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{2x + 3}&{3x + 4}&{4x + 5} \\
{3x + 5}&{5x + 8}&{10x + 17}
\end{array}} \right| $ is equal to $ \left( {x + 1} \right)\left( {x + 2} \right)\left( { - 3x - 3} \right) $ .
Now solve the equation $ \left( {x + 1} \right)\left( {x + 2} \right)\left( { - 3x - 3} \right) = 0 $ . It gives the roots of the equation as $ - 1, - 2, - 1 $ . The sum of the roots is equal to $ - 1 - 2 - 1 = - 4 $ .
The absolute value of the sum of roots of the equation is equal to $ 4 $ .
So, the absolute value of sum of roots of the equation $ \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{2x + 3}&{3x + 4}&{4x + 5} \\
{3x + 5}&{5x + 8}&{10x + 17}
\end{array}} \right| = 0 $ is equal to $ 4 $ .
So, the correct answer is “4”.
Note: Please note that the question is for the absolute value of the sum of roots, don’t confuse it with the sum of the absolute values of the roots of the equation. Also the determinant of a matrix doesn’t change by operating its rows or columns as per the property of determinants
Complete step-by-step answer:
Given: The equation is given is
$ \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{2x + 3}&{3x + 4}&{4x + 5} \\
{3x + 5}&{5x + 8}&{10x + 17}
\end{array}} \right| = 0 $ .
Firstly evaluate the determinant by using the row transformations. Firstly use the transformation as $ {R_3} \to {R_3} - {R_2} $ it gives:
$ \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{2x + 3}&{3x + 4}&{4x + 5} \\
{3x + 5}&{5x + 8}&{10x + 17}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{2x + 3}&{3x + 4}&{4x + 5} \\
{x + 2}&{2\left( {x + 2} \right)}&{6\left( {x + 2} \right)}
\end{array}} \right| $
Now use the transformation $ {R_2} \to {R_2} - {R_1} $ on the determinant:
$ \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{2x + 3}&{3x + 4}&{4x + 5} \\
{x + 2}&{2\left( {x + 2} \right)}&{6\left( {x + 2} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{x + 1}&{x + 1}&{x + 1} \\
{x + 2}&{2\left( {x + 2} \right)}&{6\left( {x + 2} \right)}
\end{array}} \right| $
Now take $ x + 1 $ and $ x + 2 $ common from second and third row respectively.
$ \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{x + 1}&{x + 1}&{x + 1} \\
{x + 2}&{2\left( {x + 2} \right)}&{6\left( {x + 2} \right)}
\end{array}} \right| = \left( {x + 1} \right)\left( {x + 2} \right)\left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
1&1&1 \\
1&2&6
\end{array}} \right| $
Now evaluate the determinant:
$
\left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
1&1&1 \\
1&2&6
\end{array}} \right| = 1\left( {\left( {2x + 3} \right) \times 1 - \left( {3x + 4} \right) \times 1} \right) - 2\left( {\left( {x + 2} \right) \times 1 - \left( {3x + 4} \right) \times 1} \right) + 6\left( {\left( {x + 2} \right) \times 1 - \left( {2x + 3} \right) \times 1} \right) \\
= 1\left( {2x + 3 - 3x - 4} \right) - 2\left( {x + 2 - 3x - 4} \right) + 6\left( {x + 2 - 2x - 3} \right) \\
= - x - 1 - 2\left( { - 2x - 2} \right) + 6\left( { - x - 1} \right) \\
= - x - 1 + 4x + 4 - 6x - 6 \\
= - 3x - 3 \\
$
So, the value of $ \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{2x + 3}&{3x + 4}&{4x + 5} \\
{3x + 5}&{5x + 8}&{10x + 17}
\end{array}} \right| $ is equal to $ \left( {x + 1} \right)\left( {x + 2} \right)\left( { - 3x - 3} \right) $ .
Now solve the equation $ \left( {x + 1} \right)\left( {x + 2} \right)\left( { - 3x - 3} \right) = 0 $ . It gives the roots of the equation as $ - 1, - 2, - 1 $ . The sum of the roots is equal to $ - 1 - 2 - 1 = - 4 $ .
The absolute value of the sum of roots of the equation is equal to $ 4 $ .
So, the absolute value of sum of roots of the equation $ \left| {\begin{array}{*{20}{c}}
{x + 2}&{2x + 3}&{3x + 4} \\
{2x + 3}&{3x + 4}&{4x + 5} \\
{3x + 5}&{5x + 8}&{10x + 17}
\end{array}} \right| = 0 $ is equal to $ 4 $ .
So, the correct answer is “4”.
Note: Please note that the question is for the absolute value of the sum of roots, don’t confuse it with the sum of the absolute values of the roots of the equation. Also the determinant of a matrix doesn’t change by operating its rows or columns as per the property of determinants
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

