
\[{\text{ABCD}}\] is a rectangle formed by the points, \[{\text{A}}\left( { - 1, - 1} \right),{\text{ B}}\left( { - 1,4} \right),{\text{ C}}\left( {5,4} \right)\] and \[{\text{D}}\left( {5, - 1} \right).\] \[{\text{P, Q, R, S}}\] are the mid-points of \[{\text{AB,BC,CD }}\] and \[{\text{DA}}\] respectively. Is the quadrilateral PQRS a square? A rectangle? Or a rhombus? Justify your answer.
Answer
573k+ views
Hint: Since \[{\text{P,Q,R,S}}\] are the mid-points of side \[{\text{AB, BC, CD }}\] and \[{\text{DA}}\] of rectangle \[{\text{ABCD}}\], the question can be solved by applying the midpoint formula through which we will get the coordinates of \[{\text{P,Q,R,S}}\] and finally we have to apply the distance formula and we will get a length of each side.
Complete step-by-step answer:
Firstly, applying midpoint formula, i.e., \[\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)\]
Here \[{\text{P}}\] is the midpoint of \[{\text{AB}}\], where \[{x_1} = - 1,{y_1} = - 1\] and \[{x_2} = - 1,{y_2} = 4\]
We get, Coordinates of \[{\text{P}} = \left( {\dfrac{{ - 1 - 1}}{2}, \dfrac{{ - 1 + 4}}{2}} \right) = \left( { - \dfrac{2}{2},\dfrac{3}{2}} \right) = \left( { - 1,\dfrac{3}{2}} \right)\]
Here \[{\text{Q}}\] is the midpoint of \[{\text{BC}}\], where \[{x_1} = - 1,{y_1} = 4\] and \[{x_2} = 5,{y_2} = 4\]
We get, Coordinates of \[{\text{Q = }}\left( {\dfrac{{ - 1 + 5}}{2}, \dfrac{{4 + 4}}{2}} \right) = \left( {\dfrac{4}{2}, \dfrac{8}{2}} \right) = \left( {2,4} \right)\]
Here \[{\text{R}}\] is the midpoint of \[{\text{CD}}\], where \[{x_1} = 5,{y_1} = 4\]and \[{x_2} = 5,{y_2} = - 1\]
Coordinates of ${\text{R}} = \left( {\dfrac{{5 + 5}}{2}, \dfrac{{ - 1 + 4}}{2}} \right) = \left( {\dfrac{{10}}{2},\dfrac{3}{2}} \right) = \left( {5, \dfrac{3}{2}} \right)$
Here \[{\text{S}}\] is the midpoint of \[{\text{DA}}\], where \[{x_1} = 5,{y_1} = - 1\] and \[{x_2} = - 1,{y_2} = - 1\]
Coordinates of $S = \left( {\dfrac{{ - 1 + 5}}{2}, \dfrac{{ - 1 - 1}}{2}} \right) = \left( {\dfrac{4}{2}, - \dfrac{2}{2}} \right) = \left( {2, - 1} \right)$,
Therefore, vertices of the quadrilateral PQRS are $P\left( { - 1, \dfrac{3}{2}} \right)$, $Q(2,4)$, $R\left( {5,\dfrac{3}{2}} \right)$, $S(2,1)$
Now, by applying distance formula, i.e., $\sqrt {({x_2} - {x_1})_{}^2 + ({y_2} - {y_1})_{}^2} $, we can find out the length of all the sides of the quadrilateral \[{\text{PQRS}}\]
So, length of side $PQ = \sqrt {( - 1 - 2)_{}^2 + \left( {\dfrac{3}{2} - 4} \right)_{}^2} = \sqrt {( - 3)_{}^2 + \left( { - \dfrac{5}{2}} \right)_{}^2} = \sqrt {9 + \dfrac{{25}}{4}} = \sqrt {\dfrac{{61}}{4}} $
Here ${x_2} = - 1,{x_1} = 2,{y_2} = \dfrac{3}{2},{y_1} = 4$
Length of side $QR = \sqrt {(2 - 5)_{}^2 + \left( {4 - \dfrac{3}{2}} \right)_{}^2} = \sqrt {( - 3)_{}^2 + \left( {\dfrac{5}{2}} \right)_{}^2} = \sqrt {9 + \dfrac{{25}}{4}} = \sqrt {\dfrac{{61}}{4}} $
Here ${x_2} = 2, {x_1} = 5, {y_2} = - 3, {y_1} = \dfrac{5}{2}$
Length of side $RS = \sqrt {(5 - 2)_{}^2 + \left( {\dfrac{3}{2} + 1} \right)_{}^2} = \sqrt {(3)_{}^2 + \left( {\dfrac{5}{2}} \right)_{}^2} = \sqrt {9 + \dfrac{{24}}{4}} = \sqrt {\dfrac{{61}}{4}} $
Here ${x_2} = 5, {x_1} = 2, {y_2} = \dfrac{3}{2}, {y_1} = - 1$
Length of side $SP = \sqrt {(2 + 1)_{}^2 + \left( { - 1 - \dfrac{3}{2}} \right)_{}^2} = \sqrt {(3)_{}^2 + \left( { - \dfrac{5}{2}} \right)_{}^2} = \sqrt {9 + \dfrac{{25}}{4}} = \sqrt {\dfrac{{61}}{4}} $
Here ${x_2} = 2, {x_1} = - 1, {y_2} = - 1, {y_1} = \dfrac{3}{2}$
Since all the sides of the quadrilateral \[{\text{PQRS}}\] so it is clear that it can be either square or rhombus. So now we have to find out the length of the diagonal to check whether it is a square or quadrilateral.
Here, we applying distance formula $\sqrt {({x_2} - {x_1})_{}^2 + ({y_2} - {y_1})_{}^2} $
We get, Length of the diagonal $PR = \sqrt {( - 1 - 5)_{}^2 + \left( {\dfrac{3}{2} - \dfrac{3}{2}} \right)_{}^2} = \sqrt {( - 6)_{}^2 + 0 = } \sqrt {36} = 6$ ,
Here ${x_2} = - 1, {x_1} = 5, {y_2} = \dfrac{3}{2}, {y_1} = \dfrac{3}{2}$
Length of the diagonal $QS = \sqrt {(2 - 2)_{}^2 + (4 + 1)_{}^2} = \sqrt {0 + (5)_{}^2} = \sqrt {25} = 5$
Here ${x_2} = 2, {x_1} = 2, {y_2} = 4, {y_1} = - 1$
Since the length of the diagonals of the quadrilateral \[{\text{PQRS}}\] are not equal but the length of the sides are equal so it is a rhombus.
Note: There are six types of quadrilateral like rhombus, square, parallelogram, rectangle, trapezium and cyclic quadrilateral.
In the case of squares, all the sides and diagonals are of equal length.
In the case of rhombus all sides are equal, and the diagonals are not equal and form right angles.
Complete step-by-step answer:
Firstly, applying midpoint formula, i.e., \[\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)\]
Here \[{\text{P}}\] is the midpoint of \[{\text{AB}}\], where \[{x_1} = - 1,{y_1} = - 1\] and \[{x_2} = - 1,{y_2} = 4\]
We get, Coordinates of \[{\text{P}} = \left( {\dfrac{{ - 1 - 1}}{2}, \dfrac{{ - 1 + 4}}{2}} \right) = \left( { - \dfrac{2}{2},\dfrac{3}{2}} \right) = \left( { - 1,\dfrac{3}{2}} \right)\]
Here \[{\text{Q}}\] is the midpoint of \[{\text{BC}}\], where \[{x_1} = - 1,{y_1} = 4\] and \[{x_2} = 5,{y_2} = 4\]
We get, Coordinates of \[{\text{Q = }}\left( {\dfrac{{ - 1 + 5}}{2}, \dfrac{{4 + 4}}{2}} \right) = \left( {\dfrac{4}{2}, \dfrac{8}{2}} \right) = \left( {2,4} \right)\]
Here \[{\text{R}}\] is the midpoint of \[{\text{CD}}\], where \[{x_1} = 5,{y_1} = 4\]and \[{x_2} = 5,{y_2} = - 1\]
Coordinates of ${\text{R}} = \left( {\dfrac{{5 + 5}}{2}, \dfrac{{ - 1 + 4}}{2}} \right) = \left( {\dfrac{{10}}{2},\dfrac{3}{2}} \right) = \left( {5, \dfrac{3}{2}} \right)$
Here \[{\text{S}}\] is the midpoint of \[{\text{DA}}\], where \[{x_1} = 5,{y_1} = - 1\] and \[{x_2} = - 1,{y_2} = - 1\]
Coordinates of $S = \left( {\dfrac{{ - 1 + 5}}{2}, \dfrac{{ - 1 - 1}}{2}} \right) = \left( {\dfrac{4}{2}, - \dfrac{2}{2}} \right) = \left( {2, - 1} \right)$,
Therefore, vertices of the quadrilateral PQRS are $P\left( { - 1, \dfrac{3}{2}} \right)$, $Q(2,4)$, $R\left( {5,\dfrac{3}{2}} \right)$, $S(2,1)$
Now, by applying distance formula, i.e., $\sqrt {({x_2} - {x_1})_{}^2 + ({y_2} - {y_1})_{}^2} $, we can find out the length of all the sides of the quadrilateral \[{\text{PQRS}}\]
So, length of side $PQ = \sqrt {( - 1 - 2)_{}^2 + \left( {\dfrac{3}{2} - 4} \right)_{}^2} = \sqrt {( - 3)_{}^2 + \left( { - \dfrac{5}{2}} \right)_{}^2} = \sqrt {9 + \dfrac{{25}}{4}} = \sqrt {\dfrac{{61}}{4}} $
Here ${x_2} = - 1,{x_1} = 2,{y_2} = \dfrac{3}{2},{y_1} = 4$
Length of side $QR = \sqrt {(2 - 5)_{}^2 + \left( {4 - \dfrac{3}{2}} \right)_{}^2} = \sqrt {( - 3)_{}^2 + \left( {\dfrac{5}{2}} \right)_{}^2} = \sqrt {9 + \dfrac{{25}}{4}} = \sqrt {\dfrac{{61}}{4}} $
Here ${x_2} = 2, {x_1} = 5, {y_2} = - 3, {y_1} = \dfrac{5}{2}$
Length of side $RS = \sqrt {(5 - 2)_{}^2 + \left( {\dfrac{3}{2} + 1} \right)_{}^2} = \sqrt {(3)_{}^2 + \left( {\dfrac{5}{2}} \right)_{}^2} = \sqrt {9 + \dfrac{{24}}{4}} = \sqrt {\dfrac{{61}}{4}} $
Here ${x_2} = 5, {x_1} = 2, {y_2} = \dfrac{3}{2}, {y_1} = - 1$
Length of side $SP = \sqrt {(2 + 1)_{}^2 + \left( { - 1 - \dfrac{3}{2}} \right)_{}^2} = \sqrt {(3)_{}^2 + \left( { - \dfrac{5}{2}} \right)_{}^2} = \sqrt {9 + \dfrac{{25}}{4}} = \sqrt {\dfrac{{61}}{4}} $
Here ${x_2} = 2, {x_1} = - 1, {y_2} = - 1, {y_1} = \dfrac{3}{2}$
Since all the sides of the quadrilateral \[{\text{PQRS}}\] so it is clear that it can be either square or rhombus. So now we have to find out the length of the diagonal to check whether it is a square or quadrilateral.
Here, we applying distance formula $\sqrt {({x_2} - {x_1})_{}^2 + ({y_2} - {y_1})_{}^2} $
We get, Length of the diagonal $PR = \sqrt {( - 1 - 5)_{}^2 + \left( {\dfrac{3}{2} - \dfrac{3}{2}} \right)_{}^2} = \sqrt {( - 6)_{}^2 + 0 = } \sqrt {36} = 6$ ,
Here ${x_2} = - 1, {x_1} = 5, {y_2} = \dfrac{3}{2}, {y_1} = \dfrac{3}{2}$
Length of the diagonal $QS = \sqrt {(2 - 2)_{}^2 + (4 + 1)_{}^2} = \sqrt {0 + (5)_{}^2} = \sqrt {25} = 5$
Here ${x_2} = 2, {x_1} = 2, {y_2} = 4, {y_1} = - 1$
Since the length of the diagonals of the quadrilateral \[{\text{PQRS}}\] are not equal but the length of the sides are equal so it is a rhombus.
Note: There are six types of quadrilateral like rhombus, square, parallelogram, rectangle, trapezium and cyclic quadrilateral.
In the case of squares, all the sides and diagonals are of equal length.
In the case of rhombus all sides are equal, and the diagonals are not equal and form right angles.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

