Answer
Verified
438.6k+ views
Hint: For showing $PQRS$ as a rhombus, we must show that all its sides are equal and opposite sides are parallel. So for proving $PQRS$ as rhombus, we must prove that $PQ\parallel RS,PS\parallel RQ$ and also $PQ = PS = RS = RQ$. We can use the midpoint theorem for the triangle.
Complete step-by-step answer:
As we know that $ABCD$ is a rectangle so we can say that $AB = CD,BC = AD$ and also $AB\parallel CD,AC\parallel AD$ and also each and every angle is $90^\circ $
So $\angle A = \angle B = \angle C = \angle D = 90^\circ $
Now let us assume that $P,Q,R,S$ are the midpoints of the sides $AB,BC,CD,DA$
Now we can prove that $PQRS$ is a rhombus and we know that the parallelogram with equal sides is called a rhombus.
So constructing $AC$ we get two different triangles $\Delta ABC,\Delta ADC$
In$\Delta ABC$, $P,Q$ are the midpoints of the sides $AB,BC$ respectively.
So we can write by the midpoint theorem that
$PQ\parallel AC{\text{ and }}PQ = \dfrac{1}{2}AC$$ - - - - - - (1)$
In$\Delta ADC$, $R,S$ are the midpoints of the sides $CD,AD$ respectively.
So we can write by the midpoint theorem that
$RS\parallel AC{\text{ and RS}} = \dfrac{1}{2}AC$$ - - - - - - (2)$
Therefore in (1), we get that \[PQ\parallel AC\]
And in the equation (2) we get that \[RS\parallel AC\]
Therefore all are parallel. So \[PQ\parallel AC\parallel RS\]
Also we get that $PQ = \dfrac{1}{2}AC,RS = \dfrac{1}{2}AC$
So we get that $PQ = RS$
Therefore we get that $PQ = RS$ and also $PQ\parallel RS$. Hence if opposite sides are parallel and equal then it is a parallelogram
Now in $\Delta APS,\Delta BPQ$
We know that $P$ is the midpoint of $AB$
So $AP = BP$
And as $ABCD$ is a rectangle $\angle A = \angle B = 90^\circ $
And we know that opposite sides are equal so $AD = BC$ and we also can write that $\dfrac{{AD}}{2} = \dfrac{{BC}}{2}$
So we can write that $AS = BQ$ and $S,Q$ are midpoints of $AD,BC$
Therefore we get that $AP = BP$
$\angle PAS = \angle PBQ$
$AS = BQ$ as proved above
So we can write that
$\Delta APS \cong \Delta BPQ$ (by SAS congruency)
Since both the triangles are congruent, then corresponding parts are also congruent. So we can write
$PS = PQ$
And we proved that $PQRS$ is a parallelogram. So $PQ = RS$ and $PS = RQ$
So we proved $PS = PQ$
So we can write that this means that all the sides are equal.
Therefore $PQRS$ is a rhombus because a parallelogram with all the sides equal is a rhombus.
So $PQRS$ is a rhombus.
Note: Every square, rectangle, rhombus is a parallelogram but every parallelogram is not a rectangle, square and a rhombus. Rhombus and square both have all sides equal but in square each angle is $90^\circ $ but not in the case of rhombus.
Complete step-by-step answer:
As we know that $ABCD$ is a rectangle so we can say that $AB = CD,BC = AD$ and also $AB\parallel CD,AC\parallel AD$ and also each and every angle is $90^\circ $
So $\angle A = \angle B = \angle C = \angle D = 90^\circ $
Now let us assume that $P,Q,R,S$ are the midpoints of the sides $AB,BC,CD,DA$
Now we can prove that $PQRS$ is a rhombus and we know that the parallelogram with equal sides is called a rhombus.
So constructing $AC$ we get two different triangles $\Delta ABC,\Delta ADC$
In$\Delta ABC$, $P,Q$ are the midpoints of the sides $AB,BC$ respectively.
So we can write by the midpoint theorem that
$PQ\parallel AC{\text{ and }}PQ = \dfrac{1}{2}AC$$ - - - - - - (1)$
In$\Delta ADC$, $R,S$ are the midpoints of the sides $CD,AD$ respectively.
So we can write by the midpoint theorem that
$RS\parallel AC{\text{ and RS}} = \dfrac{1}{2}AC$$ - - - - - - (2)$
Therefore in (1), we get that \[PQ\parallel AC\]
And in the equation (2) we get that \[RS\parallel AC\]
Therefore all are parallel. So \[PQ\parallel AC\parallel RS\]
Also we get that $PQ = \dfrac{1}{2}AC,RS = \dfrac{1}{2}AC$
So we get that $PQ = RS$
Therefore we get that $PQ = RS$ and also $PQ\parallel RS$. Hence if opposite sides are parallel and equal then it is a parallelogram
Now in $\Delta APS,\Delta BPQ$
We know that $P$ is the midpoint of $AB$
So $AP = BP$
And as $ABCD$ is a rectangle $\angle A = \angle B = 90^\circ $
And we know that opposite sides are equal so $AD = BC$ and we also can write that $\dfrac{{AD}}{2} = \dfrac{{BC}}{2}$
So we can write that $AS = BQ$ and $S,Q$ are midpoints of $AD,BC$
Therefore we get that $AP = BP$
$\angle PAS = \angle PBQ$
$AS = BQ$ as proved above
So we can write that
$\Delta APS \cong \Delta BPQ$ (by SAS congruency)
Since both the triangles are congruent, then corresponding parts are also congruent. So we can write
$PS = PQ$
And we proved that $PQRS$ is a parallelogram. So $PQ = RS$ and $PS = RQ$
So we proved $PS = PQ$
So we can write that this means that all the sides are equal.
Therefore $PQRS$ is a rhombus because a parallelogram with all the sides equal is a rhombus.
So $PQRS$ is a rhombus.
Note: Every square, rectangle, rhombus is a parallelogram but every parallelogram is not a rectangle, square and a rhombus. Rhombus and square both have all sides equal but in square each angle is $90^\circ $ but not in the case of rhombus.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths