
ABCD (in order) is a rectangle with AB=CD= $ \dfrac{{12}}{5} $ and BC=DA=5. We take a point P on AD such that the value of $ \angle BPC = 90^\circ $ . Calculate the value of (BP+PC)
A) 5
B) 6
C) 7
D) 8
Answer
553.8k+ views
Hint: In this problem firstly, we will put light on a very basic yet very important topic of Mathematics. We will use the Pythagoras theorem to solve the above-given problem. Pythagoras Theorem – Pythagoras Theorem, also referred to as Pythagorean theorem, states that in a right-angled triangle, the square of the length of the hypotenuse matches the sum of the squares of the respective length of the other two sides.
Formula - $ c = \sqrt {{a^2} + {b^2}} $ (where c is the hypotenuse and a and b are the other sides in a right-angled triangle)
Complete step by step answer:
Now let’s Solve our query –
Taking ABP as right-angled triangle, in which $ \angle PAB = 90^\circ $ ,
Now applying Pythagoras theorem,
$ {(BP)^2} = {(AP)^2} + {(AB)^2} $
$ \Rightarrow {(BP)^2} = {(AP)^2} + {\left( {\dfrac{{12}}{5}} \right)^2} $
Taking AP as $ x $ , we get
$ \Rightarrow {\left( {BP} \right)^2} = \left( {\dfrac{{144}}{{25}}} \right) + {x^2} $ -----equation (1)
Taking PDC as right-angled triangle, in which $ \angle PDC = 90^\circ $ ,
Now applying Pythagoras theorem,
$ {(PC)^2} = {(PD)^2} + {(DC)^2} $
We have given $ DC = \left( {\dfrac{{12}}{5}} \right) $ , and also we have taken $ AP = x $ then $ PD = (5 - x) $ (since, given BC=DA=5 )
$ \Rightarrow {(PC)^2} = {(5 - x)^2} + {\left( {\dfrac{{12}}{5}} \right)^2} $
$ \Rightarrow {(PC)^2} = {(5 - x)^2} + \left( {\dfrac{{144}}{{25}}} \right) $ ------ equation (2)
Now,
BP and CP are two non-hypotenuse sides of the right-angled triangle BPC.
So, By Pythagoras theorem in the right-angled triangle, in which $ \angle BPC = 90^\circ $ ,
$ {(BP)^2} + {\left( {PC} \right)^2} = B{C^2} $
Now putting the values from the equation (1) and the equation (2) and it is also given in the question that BC=DA=5,
$ \left( {\dfrac{{144}}{{25}} + {x^2}} \right) + \left( {{{\left( {5 - x} \right)}^2} + \dfrac{{144}}{{25}}} \right) = 25 $
$ \Rightarrow \left( {\dfrac{{144}}{{25}} + {x^2} + 25 - {x^2} - 10x + \dfrac{{144}}{{25}}} \right) = 25 $
$ \Rightarrow \left( {\dfrac{{144}}{{25}} + {x^2}} \right) + \left( {25 + {x^2} - 10x + \dfrac{{144}}{{25}}} \right) = 25 $
$ \Rightarrow \left( {2{x^2} + 25 - 10x + \dfrac{{288}}{{25}}} \right) = 25 $
$ \Rightarrow \left( {2{x^2} - 10x + \dfrac{{288}}{{25}}} \right) = 0 $
$ \Rightarrow 50{x^2} - 250x + 288 = 0 $
Solving Quadratic equation,
An Equation of form ax²+bx+c=0, where a, b, and c are coefficients the value of x is calculated by the formula
$ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $
Here, a=50, b=-250, c=288
Putting these values in the equation,
$ \Rightarrow x = \dfrac{{ - ( - 250) \pm \sqrt {{{( - 250)}^2} - 4 \times 50 \times 288} }}{{2 \times 50}} $
$ \Rightarrow x = \dfrac{{250 \pm \sqrt {62500 - 57600} }}{{100}} $
$ \Rightarrow x = \dfrac{{250 \pm \sqrt {4900} }}{{100}} $
$ \Rightarrow x = \dfrac{{250 \pm 70}}{{100}} $
$ \Rightarrow x = \dfrac{{250 + 70}}{{100}} $ and $ x = \dfrac{{250 - 70}}{{100}} $
$ \Rightarrow x = 3.2 $ and $ x = 1.8 $
Now if we take, AP = 3.2 then PD= (5-3.2) =1.8
So, putting the value in the equation (1), we get
$ \Rightarrow {\left( {BP} \right)^2} = \left( {\dfrac{{144}}{{25}}} \right) + {(AP)^2} $
$ \Rightarrow {\left( {BP} \right)^2} = \left( {\dfrac{{144}}{{25}}} \right) + {(3.2)^2} $
$ \Rightarrow BP = \sqrt {\left( {\dfrac{{144}}{{25}}} \right) + {{(3.2)}^2}} $
$ \Rightarrow BP = \sqrt {\left( {\dfrac{{144}}{{25}}} \right) + 10.24} $
$ \Rightarrow BP = \sqrt {16} $
$ \Rightarrow BP = 4 $
So, Now,
$ \Rightarrow {(PC)^2} = {(1.8)^2} + {\left( {\dfrac{{12}}{5}} \right)^2} $
$ \Rightarrow PC = \sqrt {{{(1.8)}^2} + \left( {\dfrac{{144}}{{25}}} \right)} $
$ \Rightarrow PC = \sqrt {3.24 + \left( {\dfrac{{144}}{{25}}} \right)} $
$ \Rightarrow PC = \sqrt 9 $
$ \Rightarrow PC = 3 $
Therefore,
$ BP + PC = 4 + 3 = 7 $
Hence, option (C) is the correct answer.
Note:
There are two values of x for any equation $ a{x^2} + bx + cx = 0 $ . In this question, we have taken the value of the AP = 3.5 then automatically the value of the PD becomes another value of the x i.e. PD= 1.8. Then BP and PC are determined one by one by putting the values. If we interchange the value for the AP and PD that means if we take AP= 1.8 then the value of the PD will be 3.2. In this case, also the value of the final answer will be the same.
Formula - $ c = \sqrt {{a^2} + {b^2}} $ (where c is the hypotenuse and a and b are the other sides in a right-angled triangle)
Complete step by step answer:
Now let’s Solve our query –
Taking ABP as right-angled triangle, in which $ \angle PAB = 90^\circ $ ,
Now applying Pythagoras theorem,
$ {(BP)^2} = {(AP)^2} + {(AB)^2} $
$ \Rightarrow {(BP)^2} = {(AP)^2} + {\left( {\dfrac{{12}}{5}} \right)^2} $
Taking AP as $ x $ , we get
$ \Rightarrow {\left( {BP} \right)^2} = \left( {\dfrac{{144}}{{25}}} \right) + {x^2} $ -----equation (1)
Taking PDC as right-angled triangle, in which $ \angle PDC = 90^\circ $ ,
Now applying Pythagoras theorem,
$ {(PC)^2} = {(PD)^2} + {(DC)^2} $
We have given $ DC = \left( {\dfrac{{12}}{5}} \right) $ , and also we have taken $ AP = x $ then $ PD = (5 - x) $ (since, given BC=DA=5 )
$ \Rightarrow {(PC)^2} = {(5 - x)^2} + {\left( {\dfrac{{12}}{5}} \right)^2} $
$ \Rightarrow {(PC)^2} = {(5 - x)^2} + \left( {\dfrac{{144}}{{25}}} \right) $ ------ equation (2)
Now,
BP and CP are two non-hypotenuse sides of the right-angled triangle BPC.
So, By Pythagoras theorem in the right-angled triangle, in which $ \angle BPC = 90^\circ $ ,
$ {(BP)^2} + {\left( {PC} \right)^2} = B{C^2} $
Now putting the values from the equation (1) and the equation (2) and it is also given in the question that BC=DA=5,
$ \left( {\dfrac{{144}}{{25}} + {x^2}} \right) + \left( {{{\left( {5 - x} \right)}^2} + \dfrac{{144}}{{25}}} \right) = 25 $
$ \Rightarrow \left( {\dfrac{{144}}{{25}} + {x^2} + 25 - {x^2} - 10x + \dfrac{{144}}{{25}}} \right) = 25 $
$ \Rightarrow \left( {\dfrac{{144}}{{25}} + {x^2}} \right) + \left( {25 + {x^2} - 10x + \dfrac{{144}}{{25}}} \right) = 25 $
$ \Rightarrow \left( {2{x^2} + 25 - 10x + \dfrac{{288}}{{25}}} \right) = 25 $
$ \Rightarrow \left( {2{x^2} - 10x + \dfrac{{288}}{{25}}} \right) = 0 $
$ \Rightarrow 50{x^2} - 250x + 288 = 0 $
Solving Quadratic equation,
An Equation of form ax²+bx+c=0, where a, b, and c are coefficients the value of x is calculated by the formula
$ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $
Here, a=50, b=-250, c=288
Putting these values in the equation,
$ \Rightarrow x = \dfrac{{ - ( - 250) \pm \sqrt {{{( - 250)}^2} - 4 \times 50 \times 288} }}{{2 \times 50}} $
$ \Rightarrow x = \dfrac{{250 \pm \sqrt {62500 - 57600} }}{{100}} $
$ \Rightarrow x = \dfrac{{250 \pm \sqrt {4900} }}{{100}} $
$ \Rightarrow x = \dfrac{{250 \pm 70}}{{100}} $
$ \Rightarrow x = \dfrac{{250 + 70}}{{100}} $ and $ x = \dfrac{{250 - 70}}{{100}} $
$ \Rightarrow x = 3.2 $ and $ x = 1.8 $
Now if we take, AP = 3.2 then PD= (5-3.2) =1.8
So, putting the value in the equation (1), we get
$ \Rightarrow {\left( {BP} \right)^2} = \left( {\dfrac{{144}}{{25}}} \right) + {(AP)^2} $
$ \Rightarrow {\left( {BP} \right)^2} = \left( {\dfrac{{144}}{{25}}} \right) + {(3.2)^2} $
$ \Rightarrow BP = \sqrt {\left( {\dfrac{{144}}{{25}}} \right) + {{(3.2)}^2}} $
$ \Rightarrow BP = \sqrt {\left( {\dfrac{{144}}{{25}}} \right) + 10.24} $
$ \Rightarrow BP = \sqrt {16} $
$ \Rightarrow BP = 4 $
So, Now,
$ \Rightarrow {(PC)^2} = {(1.8)^2} + {\left( {\dfrac{{12}}{5}} \right)^2} $
$ \Rightarrow PC = \sqrt {{{(1.8)}^2} + \left( {\dfrac{{144}}{{25}}} \right)} $
$ \Rightarrow PC = \sqrt {3.24 + \left( {\dfrac{{144}}{{25}}} \right)} $
$ \Rightarrow PC = \sqrt 9 $
$ \Rightarrow PC = 3 $
Therefore,
$ BP + PC = 4 + 3 = 7 $
Hence, option (C) is the correct answer.
Note:
There are two values of x for any equation $ a{x^2} + bx + cx = 0 $ . In this question, we have taken the value of the AP = 3.5 then automatically the value of the PD becomes another value of the x i.e. PD= 1.8. Then BP and PC are determined one by one by putting the values. If we interchange the value for the AP and PD that means if we take AP= 1.8 then the value of the PD will be 3.2. In this case, also the value of the final answer will be the same.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

10 examples of evaporation in daily life with explanations

