
$ {a_1}\hat i + {a_2}\hat j $ is a unit vector perpendicular to $ 4\hat i - 3\hat j $ if
$ \left( A \right){a_1} = 0.6,{a_2} = 0.8 \\
\left(B \right){a_1} = 3,{a_2} = 4 \\
\left( C \right){a_1} = 0.8,{a_2} = 0.6 \\
\left( D \right){a_1} = 4,{a_2} = 3 \\ $
If $ \vec a = 2\hat i - 3\hat j $ and $ \vec b = 2\hat j + 3\hat k $ , then $ \left( {\vec a + \vec b} \right) \cdot \left( {\vec a - \vec b} \right) = $
$ \left( A \right)0 \\
\left( B \right) - 8 \\
\left( C \right)9 \\
\left( D \right)1 \\ $
Answer
541.2k+ views
Hint :In order to solve the first part, we are going to form two equations, one for the magnitude of the unit vector $ {a_1}\hat i + {a_2}\hat j $ and one for the dot product of the vectors $ {a_1}\hat i + {a_2}\hat j $ and $ 4\hat i - 3\hat j $ , to solve for the values of $ {a_1} $ and $ {a_2} $ . In the second part, we are going to first find the vector sum $ \left( {\vec a + \vec b} \right) $ and the vector difference $ \left( {\vec a - \vec b} \right) $ , and then their dot product.
Formula used: The magnitude of a unit vector $ {a_1}\hat i + {a_2}\hat j $ is given by
$ \sqrt {{a_1}^2 + {a_2}^2} = 1 $
The sum of the two vectors $ x\hat i + y\hat j + z\hat k $ and $ a\hat i + b\hat j + c\hat k $ is
$ \left( {a + x} \right)\hat i + \left( {b + y} \right)\hat j + \left( {z + c} \right)\hat k $
The difference of the two vectors $ x\hat i + y\hat j + z\hat k $ and $ a\hat i + b\hat j + c\hat k $ is
$ \left( {a - x} \right)\hat i + \left( {b - y} \right)\hat j + \left( {z - c} \right)\hat k $
The dot product of the two vectors $ x\hat i + y\hat j + z\hat k $ and $ a\hat i + b\hat j + c\hat k $ is
$ ax + by + cz $
Complete Step By Step Answer:
It is given that $ {a_1}\hat i + {a_2}\hat j $ is a unit vector
This implies that the magnitude of the vector is equal to $ 1 $
Mathematically, we can write
$ \sqrt {{a_1}^2 + {a_2}^2} = 1 - - - \left( 1 \right) $
Now, it is also given that $ {a_1}\hat i + {a_2}\hat j $ is a unit vector perpendicular to $ 4\hat i - 3\hat j $
This implies
$ \left( {{a_1}\hat i + {a_2}\hat j} \right) \cdot \left( {4\hat i - 3\hat j} \right) = 0 $
Hence the equation becomes
$ 4{a_1} - 3{a_2} = 0 \\
\Rightarrow {a_1} = \dfrac{3}{4}{a_2} \\ $
Using this in the equation $ \left( 1 \right) $
$ \Rightarrow {\left( {\dfrac{3}{4}{a_2}} \right)^2} + {a_2}^2 = 1 \\
\Rightarrow \dfrac{9}{{16}}{a_2}^2 + {a_2}^2 = 1 \\
\Rightarrow \dfrac{{25}}{{16}}{a_2}^2 = 1 \\
\Rightarrow {a_2}^2 = \dfrac{{16}}{{25}} \\
\Rightarrow {a_2} = \dfrac{4}{5} = 0.8 \\ $
Now using this value to get the value for $ {a_1} $
$ \Rightarrow {a_1} = \dfrac{3}{4} \times 0.8 = 0.6 $
Thus, the option $ \left( A \right){a_1} = 0.6,{a_2} = 0.8 $ is correct.
In part $ 2 $ , it is given that $ \vec a = 2\hat i - 3\hat j $ and $ \vec b = 2\hat j + 3\hat k $
Now,
$ \vec a + \vec b = \left( {2\hat i - 3\hat j} \right) + \left( {2\hat j + 3\hat k} \right) = 2\hat i - \hat j + 3\hat k \\
\vec a - \vec b = \left( {2\hat i - 3\hat j} \right) - \left( {2\hat j + 3\hat k} \right) = 2\hat i - 5\hat j - 3\hat k \\ $
Then, $ \left( {\vec a + \vec b} \right) \cdot \left( {\vec a - \vec b} \right) $ can be computed as
$ \left( {\vec a + \vec b} \right) \cdot \left( {\vec a - \vec b} \right) = \left( {2\hat i - \hat j + 3\hat k} \right) \cdot \left( {2\hat i - 5\hat j - 3\hat k} \right) = 4 + 5 - 9 = 0 $
Hence, option $ \left( A \right)0 $ is the correct option.
Note :
It is important to note that as in the first part, we are given with the magnitude of the vector $ {a_1}\hat i + {a_2}\hat j $ , many students miss that and are able to form just one equation. However, with two equations, it is very simple to solve this. In the second part, the sum and the difference vectors are calculated directly and the dot product is done.
Formula used: The magnitude of a unit vector $ {a_1}\hat i + {a_2}\hat j $ is given by
$ \sqrt {{a_1}^2 + {a_2}^2} = 1 $
The sum of the two vectors $ x\hat i + y\hat j + z\hat k $ and $ a\hat i + b\hat j + c\hat k $ is
$ \left( {a + x} \right)\hat i + \left( {b + y} \right)\hat j + \left( {z + c} \right)\hat k $
The difference of the two vectors $ x\hat i + y\hat j + z\hat k $ and $ a\hat i + b\hat j + c\hat k $ is
$ \left( {a - x} \right)\hat i + \left( {b - y} \right)\hat j + \left( {z - c} \right)\hat k $
The dot product of the two vectors $ x\hat i + y\hat j + z\hat k $ and $ a\hat i + b\hat j + c\hat k $ is
$ ax + by + cz $
Complete Step By Step Answer:
It is given that $ {a_1}\hat i + {a_2}\hat j $ is a unit vector
This implies that the magnitude of the vector is equal to $ 1 $
Mathematically, we can write
$ \sqrt {{a_1}^2 + {a_2}^2} = 1 - - - \left( 1 \right) $
Now, it is also given that $ {a_1}\hat i + {a_2}\hat j $ is a unit vector perpendicular to $ 4\hat i - 3\hat j $
This implies
$ \left( {{a_1}\hat i + {a_2}\hat j} \right) \cdot \left( {4\hat i - 3\hat j} \right) = 0 $
Hence the equation becomes
$ 4{a_1} - 3{a_2} = 0 \\
\Rightarrow {a_1} = \dfrac{3}{4}{a_2} \\ $
Using this in the equation $ \left( 1 \right) $
$ \Rightarrow {\left( {\dfrac{3}{4}{a_2}} \right)^2} + {a_2}^2 = 1 \\
\Rightarrow \dfrac{9}{{16}}{a_2}^2 + {a_2}^2 = 1 \\
\Rightarrow \dfrac{{25}}{{16}}{a_2}^2 = 1 \\
\Rightarrow {a_2}^2 = \dfrac{{16}}{{25}} \\
\Rightarrow {a_2} = \dfrac{4}{5} = 0.8 \\ $
Now using this value to get the value for $ {a_1} $
$ \Rightarrow {a_1} = \dfrac{3}{4} \times 0.8 = 0.6 $
Thus, the option $ \left( A \right){a_1} = 0.6,{a_2} = 0.8 $ is correct.
In part $ 2 $ , it is given that $ \vec a = 2\hat i - 3\hat j $ and $ \vec b = 2\hat j + 3\hat k $
Now,
$ \vec a + \vec b = \left( {2\hat i - 3\hat j} \right) + \left( {2\hat j + 3\hat k} \right) = 2\hat i - \hat j + 3\hat k \\
\vec a - \vec b = \left( {2\hat i - 3\hat j} \right) - \left( {2\hat j + 3\hat k} \right) = 2\hat i - 5\hat j - 3\hat k \\ $
Then, $ \left( {\vec a + \vec b} \right) \cdot \left( {\vec a - \vec b} \right) $ can be computed as
$ \left( {\vec a + \vec b} \right) \cdot \left( {\vec a - \vec b} \right) = \left( {2\hat i - \hat j + 3\hat k} \right) \cdot \left( {2\hat i - 5\hat j - 3\hat k} \right) = 4 + 5 - 9 = 0 $
Hence, option $ \left( A \right)0 $ is the correct option.
Note :
It is important to note that as in the first part, we are given with the magnitude of the vector $ {a_1}\hat i + {a_2}\hat j $ , many students miss that and are able to form just one equation. However, with two equations, it is very simple to solve this. In the second part, the sum and the difference vectors are calculated directly and the dot product is done.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

