
$ {a_1}\hat i + {a_2}\hat j $ is a unit vector perpendicular to $ 4\hat i - 3\hat j $ if
$ \left( A \right){a_1} = 0.6,{a_2} = 0.8 \\
\left(B \right){a_1} = 3,{a_2} = 4 \\
\left( C \right){a_1} = 0.8,{a_2} = 0.6 \\
\left( D \right){a_1} = 4,{a_2} = 3 \\ $
If $ \vec a = 2\hat i - 3\hat j $ and $ \vec b = 2\hat j + 3\hat k $ , then $ \left( {\vec a + \vec b} \right) \cdot \left( {\vec a - \vec b} \right) = $
$ \left( A \right)0 \\
\left( B \right) - 8 \\
\left( C \right)9 \\
\left( D \right)1 \\ $
Answer
527.7k+ views
Hint :In order to solve the first part, we are going to form two equations, one for the magnitude of the unit vector $ {a_1}\hat i + {a_2}\hat j $ and one for the dot product of the vectors $ {a_1}\hat i + {a_2}\hat j $ and $ 4\hat i - 3\hat j $ , to solve for the values of $ {a_1} $ and $ {a_2} $ . In the second part, we are going to first find the vector sum $ \left( {\vec a + \vec b} \right) $ and the vector difference $ \left( {\vec a - \vec b} \right) $ , and then their dot product.
Formula used: The magnitude of a unit vector $ {a_1}\hat i + {a_2}\hat j $ is given by
$ \sqrt {{a_1}^2 + {a_2}^2} = 1 $
The sum of the two vectors $ x\hat i + y\hat j + z\hat k $ and $ a\hat i + b\hat j + c\hat k $ is
$ \left( {a + x} \right)\hat i + \left( {b + y} \right)\hat j + \left( {z + c} \right)\hat k $
The difference of the two vectors $ x\hat i + y\hat j + z\hat k $ and $ a\hat i + b\hat j + c\hat k $ is
$ \left( {a - x} \right)\hat i + \left( {b - y} \right)\hat j + \left( {z - c} \right)\hat k $
The dot product of the two vectors $ x\hat i + y\hat j + z\hat k $ and $ a\hat i + b\hat j + c\hat k $ is
$ ax + by + cz $
Complete Step By Step Answer:
It is given that $ {a_1}\hat i + {a_2}\hat j $ is a unit vector
This implies that the magnitude of the vector is equal to $ 1 $
Mathematically, we can write
$ \sqrt {{a_1}^2 + {a_2}^2} = 1 - - - \left( 1 \right) $
Now, it is also given that $ {a_1}\hat i + {a_2}\hat j $ is a unit vector perpendicular to $ 4\hat i - 3\hat j $
This implies
$ \left( {{a_1}\hat i + {a_2}\hat j} \right) \cdot \left( {4\hat i - 3\hat j} \right) = 0 $
Hence the equation becomes
$ 4{a_1} - 3{a_2} = 0 \\
\Rightarrow {a_1} = \dfrac{3}{4}{a_2} \\ $
Using this in the equation $ \left( 1 \right) $
$ \Rightarrow {\left( {\dfrac{3}{4}{a_2}} \right)^2} + {a_2}^2 = 1 \\
\Rightarrow \dfrac{9}{{16}}{a_2}^2 + {a_2}^2 = 1 \\
\Rightarrow \dfrac{{25}}{{16}}{a_2}^2 = 1 \\
\Rightarrow {a_2}^2 = \dfrac{{16}}{{25}} \\
\Rightarrow {a_2} = \dfrac{4}{5} = 0.8 \\ $
Now using this value to get the value for $ {a_1} $
$ \Rightarrow {a_1} = \dfrac{3}{4} \times 0.8 = 0.6 $
Thus, the option $ \left( A \right){a_1} = 0.6,{a_2} = 0.8 $ is correct.
In part $ 2 $ , it is given that $ \vec a = 2\hat i - 3\hat j $ and $ \vec b = 2\hat j + 3\hat k $
Now,
$ \vec a + \vec b = \left( {2\hat i - 3\hat j} \right) + \left( {2\hat j + 3\hat k} \right) = 2\hat i - \hat j + 3\hat k \\
\vec a - \vec b = \left( {2\hat i - 3\hat j} \right) - \left( {2\hat j + 3\hat k} \right) = 2\hat i - 5\hat j - 3\hat k \\ $
Then, $ \left( {\vec a + \vec b} \right) \cdot \left( {\vec a - \vec b} \right) $ can be computed as
$ \left( {\vec a + \vec b} \right) \cdot \left( {\vec a - \vec b} \right) = \left( {2\hat i - \hat j + 3\hat k} \right) \cdot \left( {2\hat i - 5\hat j - 3\hat k} \right) = 4 + 5 - 9 = 0 $
Hence, option $ \left( A \right)0 $ is the correct option.
Note :
It is important to note that as in the first part, we are given with the magnitude of the vector $ {a_1}\hat i + {a_2}\hat j $ , many students miss that and are able to form just one equation. However, with two equations, it is very simple to solve this. In the second part, the sum and the difference vectors are calculated directly and the dot product is done.
Formula used: The magnitude of a unit vector $ {a_1}\hat i + {a_2}\hat j $ is given by
$ \sqrt {{a_1}^2 + {a_2}^2} = 1 $
The sum of the two vectors $ x\hat i + y\hat j + z\hat k $ and $ a\hat i + b\hat j + c\hat k $ is
$ \left( {a + x} \right)\hat i + \left( {b + y} \right)\hat j + \left( {z + c} \right)\hat k $
The difference of the two vectors $ x\hat i + y\hat j + z\hat k $ and $ a\hat i + b\hat j + c\hat k $ is
$ \left( {a - x} \right)\hat i + \left( {b - y} \right)\hat j + \left( {z - c} \right)\hat k $
The dot product of the two vectors $ x\hat i + y\hat j + z\hat k $ and $ a\hat i + b\hat j + c\hat k $ is
$ ax + by + cz $
Complete Step By Step Answer:
It is given that $ {a_1}\hat i + {a_2}\hat j $ is a unit vector
This implies that the magnitude of the vector is equal to $ 1 $
Mathematically, we can write
$ \sqrt {{a_1}^2 + {a_2}^2} = 1 - - - \left( 1 \right) $
Now, it is also given that $ {a_1}\hat i + {a_2}\hat j $ is a unit vector perpendicular to $ 4\hat i - 3\hat j $
This implies
$ \left( {{a_1}\hat i + {a_2}\hat j} \right) \cdot \left( {4\hat i - 3\hat j} \right) = 0 $
Hence the equation becomes
$ 4{a_1} - 3{a_2} = 0 \\
\Rightarrow {a_1} = \dfrac{3}{4}{a_2} \\ $
Using this in the equation $ \left( 1 \right) $
$ \Rightarrow {\left( {\dfrac{3}{4}{a_2}} \right)^2} + {a_2}^2 = 1 \\
\Rightarrow \dfrac{9}{{16}}{a_2}^2 + {a_2}^2 = 1 \\
\Rightarrow \dfrac{{25}}{{16}}{a_2}^2 = 1 \\
\Rightarrow {a_2}^2 = \dfrac{{16}}{{25}} \\
\Rightarrow {a_2} = \dfrac{4}{5} = 0.8 \\ $
Now using this value to get the value for $ {a_1} $
$ \Rightarrow {a_1} = \dfrac{3}{4} \times 0.8 = 0.6 $
Thus, the option $ \left( A \right){a_1} = 0.6,{a_2} = 0.8 $ is correct.
In part $ 2 $ , it is given that $ \vec a = 2\hat i - 3\hat j $ and $ \vec b = 2\hat j + 3\hat k $
Now,
$ \vec a + \vec b = \left( {2\hat i - 3\hat j} \right) + \left( {2\hat j + 3\hat k} \right) = 2\hat i - \hat j + 3\hat k \\
\vec a - \vec b = \left( {2\hat i - 3\hat j} \right) - \left( {2\hat j + 3\hat k} \right) = 2\hat i - 5\hat j - 3\hat k \\ $
Then, $ \left( {\vec a + \vec b} \right) \cdot \left( {\vec a - \vec b} \right) $ can be computed as
$ \left( {\vec a + \vec b} \right) \cdot \left( {\vec a - \vec b} \right) = \left( {2\hat i - \hat j + 3\hat k} \right) \cdot \left( {2\hat i - 5\hat j - 3\hat k} \right) = 4 + 5 - 9 = 0 $
Hence, option $ \left( A \right)0 $ is the correct option.
Note :
It is important to note that as in the first part, we are given with the magnitude of the vector $ {a_1}\hat i + {a_2}\hat j $ , many students miss that and are able to form just one equation. However, with two equations, it is very simple to solve this. In the second part, the sum and the difference vectors are calculated directly and the dot product is done.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

