
A wire of length l and 3 identical cells of negligible internal resistance are connected in series. Due to the current, the temperature of the wire is raised by $\vartriangle \text{T}$ in the time t. A number N of similar cells is now connected in series with a wire of the same material and cross section but length 2l. The temperature of the wire is raised by the same amount $\vartriangle \text{T}$ at the same time t. the values of $\vartriangle \text{l}$ is:
A. 3
B. 2
C. 6
D. 4
Answer
544.5k+ views
Hint: The heat produced $\left( {{\text{I}}^{2}}\text{Rt} \right)$ is made equal to Q, which is given by $\text{mc}\vartriangle \text{T}$ . By equating these equations for two cases and applying the given conditions, the value of N can be calculated.
Complete step by step solution:
We know that total current I is given by:
$\text{I =}\dfrac{\text{Total emf}}{\text{Total R}}$
So, for case1, ${{\text{I}}_{1}}=\dfrac{3\text{E}}{\text{R}}$ {As there are three cells connected in series}
We know that
$\text{R}=\dfrac{\text{f l}}{\text{A}}$ ….. (1)
So
${{\text{I}}_{1}}=\dfrac{3\text{E A}}{\text{f l}}$ ….. (2)
The heat produced is given by
$\begin{align}
& {{\text{H}}_{1}}={{\text{I}}_{1}}^{2}\text{Rt} \\
& {{\text{H}}_{1}}={{\left( \dfrac{3\text{E A}}{\text{f l}} \right)}^{2}}\left( \dfrac{\text{f l}}{\text{A}} \right)\text{t} \\
\end{align}$
From equation (1) and (2)
$\begin{align}
& {{\text{H}}_{1}}=\left( \dfrac{9{{\text{E}}^{2}}{{\text{A}}^{2}}}{{{\text{f}}^{2}}\text{ }{{\text{l}}^{2}}} \right)\left( \dfrac{\text{f l}}{\text{A}} \right)\text{t} \\
& {{\text{H}}_{1}}=\left( \dfrac{9{{\text{E}}^{2}}\text{A}}{{{\text{f}}^{2}}\text{ }} \right)\text{t} \\
\end{align}$
Now heat produced $\left( {{\text{I}}_{1}}^{2}\text{Rt} \right)$ is equal to Q, which is the heat energy and is given by $\text{Q}=\text{mc}\vartriangle \text{T}$
So,
${{\text{I}}_{1}}^{2}\text{Rt}=\text{mc}\vartriangle \text{T}$
$\left( \dfrac{9{{\text{E}}^{2}}\text{At}}{\text{f l}} \right)=\text{mc}\vartriangle \text{T}$ …… (3)
For case 2,
${{\text{I}}_{2}}=\dfrac{\text{NE}}{\text{R}}$ { Here N is to be calculated}
$=\dfrac{\text{N E A}}{\text{f}\left( 2\text{l} \right)}$
So,
${{\text{H}}_{2}}={{\text{I}}_{2}}^{2}\text{Rt}$
$=\left( \dfrac{{{\text{N}}^{2}}{{\text{E}}^{2}}{{\text{A}}^{2}}}{{{\text{f}}^{2}}{{\left( 2\text{ l} \right)}^{2}}} \right)\text{ }\left( \dfrac{\text{f}\left( \text{2 l} \right)}{\text{A}} \right)\text{t}$
${{\text{H}}_{2}}=\left( \dfrac{{{\text{N}}^{2}}{{\text{E}}^{2}}\text{A}}{\text{f }\left( 2\text{ l} \right)} \right)\text{t}$
Now as
${{\text{H}}_{2}}=\text{Q=mc}\vartriangle \text{T}$
$=\left( \dfrac{{{\text{N}}^{2}}{{\text{E}}^{2}}\text{A}}{\text{f}\left( 2\text{ l} \right)} \right)=\left( 2\text{ m} \right)\text{ c}\vartriangle \text{t}$ …… (4) { Here mass is doubled as the length of the wire is double}
On dividing equation (3) by equation (4), we get:
$\left( \dfrac{9{{\text{E}}^{2}}\text{A t}}{\text{f l}} \right)\text{ }\left( \dfrac{\text{f}\left( 2\text{ l} \right)}{{{\text{N}}^{2}}{{\text{E}}^{2}}\text{A t}} \right)=\dfrac{\text{mc}\vartriangle \text{T}}{\left( 2\text{m} \right)\text{c}\vartriangle \text{T}}$
Or
$\dfrac{9\times 2}{{{\text{N}}^{2}}}=\dfrac{1}{2}$
${{\text{N}}^{2}}=36$
$\text{N=6}$
Note: When electric current passes through a conductor, then due to continuous collisions of free electrons with the ions, their energy is repeatedly lost. From ohm’s law, the potential difference between two terminal of a conductor with resistance R when current I is passing through it is V = IR
The magnitude of charge flowing through the conductor in time interval $\vartriangle \text{t}$ is given by:
$\vartriangle \text{q=I}\vartriangle \text{t}$
Electric energy required is calculated as:
$\vartriangle \text{U}$ = Charge $\times $ Potential difference $=\left( \vartriangle \text{q} \right)\times \left( \text{U} \right)$
$\vartriangle \text{U}$$={{\text{I}}^{2}}\text{R t}$
This electric energy is dissipated in the form of heat
So,
$\begin{align}
& \text{H}={{\text{I}}^{2}}\text{R t}=\dfrac{{{\text{V}}^{2}}}{\text{R}}\vartriangle \text{t} \\
& \text{=V I}\vartriangle \text{t } \\
\end{align}$ 2
Complete step by step solution:
We know that total current I is given by:
$\text{I =}\dfrac{\text{Total emf}}{\text{Total R}}$
So, for case1, ${{\text{I}}_{1}}=\dfrac{3\text{E}}{\text{R}}$ {As there are three cells connected in series}
We know that
$\text{R}=\dfrac{\text{f l}}{\text{A}}$ ….. (1)
So
${{\text{I}}_{1}}=\dfrac{3\text{E A}}{\text{f l}}$ ….. (2)
The heat produced is given by
$\begin{align}
& {{\text{H}}_{1}}={{\text{I}}_{1}}^{2}\text{Rt} \\
& {{\text{H}}_{1}}={{\left( \dfrac{3\text{E A}}{\text{f l}} \right)}^{2}}\left( \dfrac{\text{f l}}{\text{A}} \right)\text{t} \\
\end{align}$
From equation (1) and (2)
$\begin{align}
& {{\text{H}}_{1}}=\left( \dfrac{9{{\text{E}}^{2}}{{\text{A}}^{2}}}{{{\text{f}}^{2}}\text{ }{{\text{l}}^{2}}} \right)\left( \dfrac{\text{f l}}{\text{A}} \right)\text{t} \\
& {{\text{H}}_{1}}=\left( \dfrac{9{{\text{E}}^{2}}\text{A}}{{{\text{f}}^{2}}\text{ }} \right)\text{t} \\
\end{align}$
Now heat produced $\left( {{\text{I}}_{1}}^{2}\text{Rt} \right)$ is equal to Q, which is the heat energy and is given by $\text{Q}=\text{mc}\vartriangle \text{T}$
So,
${{\text{I}}_{1}}^{2}\text{Rt}=\text{mc}\vartriangle \text{T}$
$\left( \dfrac{9{{\text{E}}^{2}}\text{At}}{\text{f l}} \right)=\text{mc}\vartriangle \text{T}$ …… (3)
For case 2,
${{\text{I}}_{2}}=\dfrac{\text{NE}}{\text{R}}$ { Here N is to be calculated}
$=\dfrac{\text{N E A}}{\text{f}\left( 2\text{l} \right)}$
So,
${{\text{H}}_{2}}={{\text{I}}_{2}}^{2}\text{Rt}$
$=\left( \dfrac{{{\text{N}}^{2}}{{\text{E}}^{2}}{{\text{A}}^{2}}}{{{\text{f}}^{2}}{{\left( 2\text{ l} \right)}^{2}}} \right)\text{ }\left( \dfrac{\text{f}\left( \text{2 l} \right)}{\text{A}} \right)\text{t}$
${{\text{H}}_{2}}=\left( \dfrac{{{\text{N}}^{2}}{{\text{E}}^{2}}\text{A}}{\text{f }\left( 2\text{ l} \right)} \right)\text{t}$
Now as
${{\text{H}}_{2}}=\text{Q=mc}\vartriangle \text{T}$
$=\left( \dfrac{{{\text{N}}^{2}}{{\text{E}}^{2}}\text{A}}{\text{f}\left( 2\text{ l} \right)} \right)=\left( 2\text{ m} \right)\text{ c}\vartriangle \text{t}$ …… (4) { Here mass is doubled as the length of the wire is double}
On dividing equation (3) by equation (4), we get:
$\left( \dfrac{9{{\text{E}}^{2}}\text{A t}}{\text{f l}} \right)\text{ }\left( \dfrac{\text{f}\left( 2\text{ l} \right)}{{{\text{N}}^{2}}{{\text{E}}^{2}}\text{A t}} \right)=\dfrac{\text{mc}\vartriangle \text{T}}{\left( 2\text{m} \right)\text{c}\vartriangle \text{T}}$
Or
$\dfrac{9\times 2}{{{\text{N}}^{2}}}=\dfrac{1}{2}$
${{\text{N}}^{2}}=36$
$\text{N=6}$
Note: When electric current passes through a conductor, then due to continuous collisions of free electrons with the ions, their energy is repeatedly lost. From ohm’s law, the potential difference between two terminal of a conductor with resistance R when current I is passing through it is V = IR
The magnitude of charge flowing through the conductor in time interval $\vartriangle \text{t}$ is given by:
$\vartriangle \text{q=I}\vartriangle \text{t}$
Electric energy required is calculated as:
$\vartriangle \text{U}$ = Charge $\times $ Potential difference $=\left( \vartriangle \text{q} \right)\times \left( \text{U} \right)$
$\vartriangle \text{U}$$={{\text{I}}^{2}}\text{R t}$
This electric energy is dissipated in the form of heat
So,
$\begin{align}
& \text{H}={{\text{I}}^{2}}\text{R t}=\dfrac{{{\text{V}}^{2}}}{\text{R}}\vartriangle \text{t} \\
& \text{=V I}\vartriangle \text{t } \\
\end{align}$ 2
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

