Answer
Verified
454.8k+ views
Hint: Calculate the horizontal and vertical displacements of point P. Then calculate the resultant displacement of the point P.
Formulae used:
The circumference \[C\] of the circle is given by
\[ \Rightarrow C = 2\pi r\] …… (1)
Here, \[r\] is the radius of the circle.
The resultant displacement \[s\] is given by
\[ \Rightarrow s = \sqrt {s_x^2 + s_y^2} \] …… (2)
Here, \[{s_x}\] is the horizontal component of displacement and \[{s_y}\] is the vertical component of displacement.
Complete step by step answer:
Calculate the horizontal displacement of the point P between the times \[{t_1}\] to \[{t_2}\].
The horizontal displacement \[{s_x}\] of the point P is equal to half of the circumference \[C\] of the wheel.
\[ \Rightarrow {s_x} = \dfrac{C}{2}\]
Substitute \[2\pi r\] for \[C\] in the above equation.
\[ \Rightarrow {s_x} = \dfrac{{2\pi r}}{2}\]
Substitute \[3.14\] for \[\pi \] and \[45\,{\text{cm}}\] for \[r\] in the above equation.
\[{s_x} = \dfrac{{2\left( {3.14} \right)\left( {45\,{\text{cm}}} \right)}}{2}\]
\[ \Rightarrow {s_x} = 141.3\,{\text{cm}}\]
Hence, the horizontal displacement of the point P is \[141.3\,{\text{cm}}\].
Calculate the vertical displacement of the point P between the times \[{t_1}\] to \[{t_2}\].
The vertical displacement \[{s_y}\] of the point P is equal to the diameter of the wheel which is twice the radius \[r\] of the wheel.
\[ \Rightarrow {s_y} = 2r\]
Substitute \[45\,{\text{cm}}\] for \[r\] in the above equation.
\[ \Rightarrow {s_y} = 2\left( {45\,{\text{cm}}} \right)\]
\[ \Rightarrow {s_y} = 90\,{\text{cm}}\]
Hence, the vertical displacement of the point P is \[90\,{\text{cm}}\].
Now calculate the resultant displacement \[s\] of the point P.
Substitute \[141.3\,{\text{cm}}\] for \[{s_x}\] and \[90\,{\text{cm}}\] for \[{s_y}\] in equation (2).
\[ \Rightarrow s = \sqrt {{{\left( {141.3\,{\text{cm}}} \right)}^2} + {{\left( {90\,{\text{cm}}} \right)}^2}} \]
\[ \Rightarrow s = 167.5\,{\text{cm}}\]
\[ \Rightarrow s = 168\,{\text{cm}}\]
Therefore, the displacement of the point P is \[168\,{\text{cm}}\].
Hence, the correct option is B.
Note:One may directly determine the diameter of the wheel to calculate the displacement of point P. But it is the vertical displacement and not the resultant displacement.
Formulae used:
The circumference \[C\] of the circle is given by
\[ \Rightarrow C = 2\pi r\] …… (1)
Here, \[r\] is the radius of the circle.
The resultant displacement \[s\] is given by
\[ \Rightarrow s = \sqrt {s_x^2 + s_y^2} \] …… (2)
Here, \[{s_x}\] is the horizontal component of displacement and \[{s_y}\] is the vertical component of displacement.
Complete step by step answer:
Calculate the horizontal displacement of the point P between the times \[{t_1}\] to \[{t_2}\].
The horizontal displacement \[{s_x}\] of the point P is equal to half of the circumference \[C\] of the wheel.
\[ \Rightarrow {s_x} = \dfrac{C}{2}\]
Substitute \[2\pi r\] for \[C\] in the above equation.
\[ \Rightarrow {s_x} = \dfrac{{2\pi r}}{2}\]
Substitute \[3.14\] for \[\pi \] and \[45\,{\text{cm}}\] for \[r\] in the above equation.
\[{s_x} = \dfrac{{2\left( {3.14} \right)\left( {45\,{\text{cm}}} \right)}}{2}\]
\[ \Rightarrow {s_x} = 141.3\,{\text{cm}}\]
Hence, the horizontal displacement of the point P is \[141.3\,{\text{cm}}\].
Calculate the vertical displacement of the point P between the times \[{t_1}\] to \[{t_2}\].
The vertical displacement \[{s_y}\] of the point P is equal to the diameter of the wheel which is twice the radius \[r\] of the wheel.
\[ \Rightarrow {s_y} = 2r\]
Substitute \[45\,{\text{cm}}\] for \[r\] in the above equation.
\[ \Rightarrow {s_y} = 2\left( {45\,{\text{cm}}} \right)\]
\[ \Rightarrow {s_y} = 90\,{\text{cm}}\]
Hence, the vertical displacement of the point P is \[90\,{\text{cm}}\].
Now calculate the resultant displacement \[s\] of the point P.
Substitute \[141.3\,{\text{cm}}\] for \[{s_x}\] and \[90\,{\text{cm}}\] for \[{s_y}\] in equation (2).
\[ \Rightarrow s = \sqrt {{{\left( {141.3\,{\text{cm}}} \right)}^2} + {{\left( {90\,{\text{cm}}} \right)}^2}} \]
\[ \Rightarrow s = 167.5\,{\text{cm}}\]
\[ \Rightarrow s = 168\,{\text{cm}}\]
Therefore, the displacement of the point P is \[168\,{\text{cm}}\].
Hence, the correct option is B.
Note:One may directly determine the diameter of the wheel to calculate the displacement of point P. But it is the vertical displacement and not the resultant displacement.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
What is pollution? How many types of pollution? Define it
Discuss the main reasons for poverty in India