
A well of diameter 150 cm has a stone parapet around it. If the length of the outer edge of the parapet is 660cm then find the width of the parapet.
Answer
594k+ views
Hint: As we know that a well is a cylinder in shape.
A cylinder is defined as a surface consisting of all the points on all the lines which are parallel to a given line and which pass through a fixed plane curve in a plane not parallel to the given line.
Complete answer:
Given, the Diameter of the well \[\left( d \right) = {\text{15}}0cm.\]
Therefore the radius of well =\[75cm\]
Let the radius and diameter of the parapet is r and D respectively.
Since, length of the outer edge of the parapet =\[660cm\]
Therefore,
⇒\[{\text{2}}\pi r = {\text{66}}0cm\]
⇒\[2r = \dfrac{{{\text{66}}0}}{\pi }\]
⇒\[{\text{2}}r = \dfrac{{{\text{66}}0 \times {\text{7}}}}{{22}}\]
⇒\[r = {\text{1}}05cm\]
Therefore, \[r = {\text{1}}0{\text{5}}cm\], \[{\text{D = 210 cm}}\]
Now, width of the parapet = (Radius of parapet – Radius of the well) \[ = ({\text{1}}0{\text{5}} - {\text{75}}) = {\text{3}}0cm\]
Hence, width of the parapet is \[{\text{3}}0\;cm\]
Note: Parapet is also known as embankment. Parapets were originally used to defend buildings from military attack, but today they are primarily used as guard rails and to prevent the spread of fires. In the Bible, the Hebrews are obligated to build a parapet on the roof of their houses to prevent people from falling.
A cylinder is defined as a surface consisting of all the points on all the lines which are parallel to a given line and which pass through a fixed plane curve in a plane not parallel to the given line.
Complete answer:
Given, the Diameter of the well \[\left( d \right) = {\text{15}}0cm.\]
Therefore the radius of well =\[75cm\]
Let the radius and diameter of the parapet is r and D respectively.
Since, length of the outer edge of the parapet =\[660cm\]
Therefore,
⇒\[{\text{2}}\pi r = {\text{66}}0cm\]
⇒\[2r = \dfrac{{{\text{66}}0}}{\pi }\]
⇒\[{\text{2}}r = \dfrac{{{\text{66}}0 \times {\text{7}}}}{{22}}\]
⇒\[r = {\text{1}}05cm\]
Therefore, \[r = {\text{1}}0{\text{5}}cm\], \[{\text{D = 210 cm}}\]
Now, width of the parapet = (Radius of parapet – Radius of the well) \[ = ({\text{1}}0{\text{5}} - {\text{75}}) = {\text{3}}0cm\]
Hence, width of the parapet is \[{\text{3}}0\;cm\]
Note: Parapet is also known as embankment. Parapets were originally used to defend buildings from military attack, but today they are primarily used as guard rails and to prevent the spread of fires. In the Bible, the Hebrews are obligated to build a parapet on the roof of their houses to prevent people from falling.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

