
A vector $\vec {A}$ is rotated by a small angle $\Delta \theta$ radians ($\Delta \theta << 1$) to get a new vector $\vec {B}$. In that case $|\vec{A}-\vec {B}|$ is
A. $|\vec{A}| (1-\dfrac {\Delta {\theta}^{2}}{2})$
B. 0
C. $|\vec{A}| \Delta \theta$
D. $|\vec{B}| \Delta \theta - |\vec{A}|$
Answer
557.1k+ views
Hint: It is mentioned that the angle between the two vectors is very small. So, the rotation can be neglected and we can consider one vector to be equal to another. Now, use the formula for resultant magnitude of two vectors. Substitute the values in the formula. Then, substitute $|\vec{A}|= |\vec{B}|$ and solve the equation. Thus, find the value of the resultant magnitude of two vectors i.e. $|\vec{A}-\vec {B}|$.
Complete step by step answer:
It is given that the change in vector is very small ($\Delta \theta <<1$).
$\therefore|\vec{A}|= |\vec{B}|$ …(1)
The resultant magnitude of two vectors is given by,
$|\vec{A}-\vec {B} |=\sqrt { { |\overrightarrow { A } | }^{ 2 }+{ |\overrightarrow { B } | }^{ 2 }-2|\overrightarrow { A } ||\overrightarrow { B } |\cos {\Delta \theta } }$
Substituting equation. (1) in above equation we get,
$|\vec {A}- \vec {B}|=\sqrt { { |\overrightarrow { A } | }^{ 2 }+{ |\overrightarrow { A } | }^{ 2 }-2|\overrightarrow {{ A}^{2} } |\cos {\Delta \theta } }$
$\Rightarrow |\vec {A}- \vec {B} |= \sqrt {2{|\vec A|}^{2}- 2|\overrightarrow {{ A}^{2} } |\cos {\Delta \theta } }$
$\Rightarrow |\vec {A}- \vec {B}|= 2 |\vec {A}| \sqrt{\dfrac {(1-\cos {\Delta \theta})}{2}}$
$\Rightarrow |\vec{A}-\vec {B} |= 2 |\vec {A}| \sqrt {{\sin}^{2}({\dfrac {\Delta \theta}{2}})}$
$\Rightarrow |\vec{A}-\vec {B}|= 2 |\vec {A}| \sin {\dfrac {\Delta \theta}{2}}$ …(2)
As $\Delta \theta <<1$,
$\dfrac {\Delta \theta }{2}<<1$.
$\therefore \sin {\dfrac {\Delta \theta}{2}} \approx \dfrac {\Delta \theta}{2}$ …(3)
Substituting equation. (2) in equation. (3) we get,
$|\vec{A}-\vec {B} |= 2| \vec {A}| \times \dfrac {\Delta \theta}{2}$
$| \vec{A}-\vec {B}|= |\vec {A}| \Delta \theta$
So, the correct answer is “Option C”.
Note: Students must remember that while adding two vectors don’t only consider the magnitude of the vectors but also consider the direction of both the vectors. If you don’t consider the direction then there might be an error in your calculation. Students must understand that if we double the resultant vector and reverse one of the vectors then the resultant vector gets doubled again.
Complete step by step answer:
It is given that the change in vector is very small ($\Delta \theta <<1$).
$\therefore|\vec{A}|= |\vec{B}|$ …(1)
The resultant magnitude of two vectors is given by,
$|\vec{A}-\vec {B} |=\sqrt { { |\overrightarrow { A } | }^{ 2 }+{ |\overrightarrow { B } | }^{ 2 }-2|\overrightarrow { A } ||\overrightarrow { B } |\cos {\Delta \theta } }$
Substituting equation. (1) in above equation we get,
$|\vec {A}- \vec {B}|=\sqrt { { |\overrightarrow { A } | }^{ 2 }+{ |\overrightarrow { A } | }^{ 2 }-2|\overrightarrow {{ A}^{2} } |\cos {\Delta \theta } }$
$\Rightarrow |\vec {A}- \vec {B} |= \sqrt {2{|\vec A|}^{2}- 2|\overrightarrow {{ A}^{2} } |\cos {\Delta \theta } }$
$\Rightarrow |\vec {A}- \vec {B}|= 2 |\vec {A}| \sqrt{\dfrac {(1-\cos {\Delta \theta})}{2}}$
$\Rightarrow |\vec{A}-\vec {B} |= 2 |\vec {A}| \sqrt {{\sin}^{2}({\dfrac {\Delta \theta}{2}})}$
$\Rightarrow |\vec{A}-\vec {B}|= 2 |\vec {A}| \sin {\dfrac {\Delta \theta}{2}}$ …(2)
As $\Delta \theta <<1$,
$\dfrac {\Delta \theta }{2}<<1$.
$\therefore \sin {\dfrac {\Delta \theta}{2}} \approx \dfrac {\Delta \theta}{2}$ …(3)
Substituting equation. (2) in equation. (3) we get,
$|\vec{A}-\vec {B} |= 2| \vec {A}| \times \dfrac {\Delta \theta}{2}$
$| \vec{A}-\vec {B}|= |\vec {A}| \Delta \theta$
So, the correct answer is “Option C”.
Note: Students must remember that while adding two vectors don’t only consider the magnitude of the vectors but also consider the direction of both the vectors. If you don’t consider the direction then there might be an error in your calculation. Students must understand that if we double the resultant vector and reverse one of the vectors then the resultant vector gets doubled again.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

