
A vector $\overline {{P_1}} $ is along the positive x-axis. If its cross product with another vector $\overline {{P_2}} $ is zero, then $\overline {{P_2}} $ could be:
(A) $4\widehat j$
(B) $ - 4\widehat i$
(C) $(\widehat i + \widehat j)$
(D) $ - (\widehat i + \widehat j)$
Answer
574.5k+ views
Hint: The vector product of two vectors $\overrightarrow A $and $\overrightarrow B $is defined by $\overrightarrow A \times \overrightarrow B = \left| A \right|\left| B \right|\sin \theta \widehat n.$ Where $\widehat n$is the unit vector perpendicular to both A & B vectors and $\theta $ is the angle between them.
Complete step by step answer:
It is given that $\overrightarrow {{P_1}} $is along the positive x-axis.
When two vectors are parallel, they are multiple of each other. i.e. if $\overrightarrow {{a_1}} ||\overrightarrow {{b_1}} $ then $\overrightarrow {{a_1}} = k\overrightarrow {{b_1}} $
And also, $\widehat i$is a position vector along the x-axis.
By using the explanation written above, we can write
$ \Rightarrow \overrightarrow {{P_1}} = k\widehat i,$ where $k$is some positive real number.
If $\overrightarrow {{P_1}} = 0$then none of the options given above will make any sense. Because, no matter what the value of $\overrightarrow {{P_2}} $is, $\overrightarrow {{P_1}} \times \overrightarrow {{P_2}} = 0$
So, let us assume, $\overrightarrow {{P_1}} \ne 0$
Since, $\overrightarrow {{P_1}} \times \overrightarrow {{P_2}} = \left| {\overrightarrow {{P_1}} } \right|\left| {\overrightarrow {{P_2}} } \right|\sin \theta \widehat n$
$\overrightarrow {{P_1}} \times \overrightarrow {{P_2}} = 0 \Rightarrow \left| {\overrightarrow {{P_1}} } \right|\left| {\overrightarrow {{P_2}} } \right|\sin \theta \widehat n = 0$
$\left| {\overrightarrow {{P_1}} } \right|\left| {\overrightarrow {{P_2}} } \right|\sin \theta \widehat n = 0 \Rightarrow \sin \theta = 0$
Therefore, $\overrightarrow {{P_1}} \times \overrightarrow {{P_2}} = 0$only if the sine of angle between them is zero. i.e. $\sin \theta = 0$
$\sin \theta $can be zero only if $\theta = 0$or $\theta = {180^0}$
$ \Rightarrow \overrightarrow {{P_1}} \times \overrightarrow {{P_2}} = 0$ only if $\overrightarrow {{P_2}} $is along positive x-axis or negative x-axis.
From the given options, we can observe that, only option (B) satisfies the condition of $\overrightarrow {{P_2}} $
Therefore, the correct answer is option (B) $ - 4\widehat i.$
Note: The vector product is a vector quantity. $\widehat n$represents the direction of the cross product, $\overrightarrow {{P_1}} \times \overrightarrow {{P_2}} .$Direction of $\widehat n$is perpendicular to the plane containing the vectors $\overrightarrow {{P_1}} $ and $\overrightarrow {{P_2}} .$ In other words we can say that $\widehat n$is perpendicular to both, $\overrightarrow {{P_1}} $ and $\overrightarrow {{P_2}} $ i.e. $\widehat n \bot \overrightarrow {{P_1}} $ and $\widehat n \bot \overrightarrow {{P_2}} .$
Since, $\overrightarrow {{P_1}} \times \overrightarrow {{P_2}} $ is a vector quantity
$\overrightarrow {{P_1}} \times \overrightarrow {{P_2}} \ne \overrightarrow {{P_2}} \times \overrightarrow {{P_1}} $
Because even though their magnitude will be equal but their direction will be opposite to each other.Examples of a vector quantity are, displacement, velocity, acceleration, Force etc.
Complete step by step answer:
It is given that $\overrightarrow {{P_1}} $is along the positive x-axis.
When two vectors are parallel, they are multiple of each other. i.e. if $\overrightarrow {{a_1}} ||\overrightarrow {{b_1}} $ then $\overrightarrow {{a_1}} = k\overrightarrow {{b_1}} $
And also, $\widehat i$is a position vector along the x-axis.
By using the explanation written above, we can write
$ \Rightarrow \overrightarrow {{P_1}} = k\widehat i,$ where $k$is some positive real number.
If $\overrightarrow {{P_1}} = 0$then none of the options given above will make any sense. Because, no matter what the value of $\overrightarrow {{P_2}} $is, $\overrightarrow {{P_1}} \times \overrightarrow {{P_2}} = 0$
So, let us assume, $\overrightarrow {{P_1}} \ne 0$
Since, $\overrightarrow {{P_1}} \times \overrightarrow {{P_2}} = \left| {\overrightarrow {{P_1}} } \right|\left| {\overrightarrow {{P_2}} } \right|\sin \theta \widehat n$
$\overrightarrow {{P_1}} \times \overrightarrow {{P_2}} = 0 \Rightarrow \left| {\overrightarrow {{P_1}} } \right|\left| {\overrightarrow {{P_2}} } \right|\sin \theta \widehat n = 0$
$\left| {\overrightarrow {{P_1}} } \right|\left| {\overrightarrow {{P_2}} } \right|\sin \theta \widehat n = 0 \Rightarrow \sin \theta = 0$
Therefore, $\overrightarrow {{P_1}} \times \overrightarrow {{P_2}} = 0$only if the sine of angle between them is zero. i.e. $\sin \theta = 0$
$\sin \theta $can be zero only if $\theta = 0$or $\theta = {180^0}$
$ \Rightarrow \overrightarrow {{P_1}} \times \overrightarrow {{P_2}} = 0$ only if $\overrightarrow {{P_2}} $is along positive x-axis or negative x-axis.
From the given options, we can observe that, only option (B) satisfies the condition of $\overrightarrow {{P_2}} $
Therefore, the correct answer is option (B) $ - 4\widehat i.$
Note: The vector product is a vector quantity. $\widehat n$represents the direction of the cross product, $\overrightarrow {{P_1}} \times \overrightarrow {{P_2}} .$Direction of $\widehat n$is perpendicular to the plane containing the vectors $\overrightarrow {{P_1}} $ and $\overrightarrow {{P_2}} .$ In other words we can say that $\widehat n$is perpendicular to both, $\overrightarrow {{P_1}} $ and $\overrightarrow {{P_2}} $ i.e. $\widehat n \bot \overrightarrow {{P_1}} $ and $\widehat n \bot \overrightarrow {{P_2}} .$
Since, $\overrightarrow {{P_1}} \times \overrightarrow {{P_2}} $ is a vector quantity
$\overrightarrow {{P_1}} \times \overrightarrow {{P_2}} \ne \overrightarrow {{P_2}} \times \overrightarrow {{P_1}} $
Because even though their magnitude will be equal but their direction will be opposite to each other.Examples of a vector quantity are, displacement, velocity, acceleration, Force etc.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

