
A variable plane is at a constant distance p from the origin and meets the axes in A, B and C. The locus of the centroid of the triangle ABC is
(a) \[{{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}}={{p}^{-2}}\]
(b) \[{{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}}=4{{p}^{-2}}\]
(c) \[{{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}}=16{{p}^{-2}}\]
(d) \[{{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}}=9{{p}^{-2}}\]
Answer
537k+ views
Hint: We can assume the coordinates of the points A, B and C as $\left( a,0,0 \right)$, $\left( 0,b,0 \right)$ and $\left( 0,0,c \right)$. From these coordinates, we can determine the coordinates of the centroid of the triangle ABC as $x=\dfrac{a}{3},y=\dfrac{b}{3},z=\dfrac{c}{3}$. Also, the equation of the plane, from the intercept form can be determine as $\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1$. From this equation, we can determine the distance of the plane from the origin, which is given to be equal to p, in terms of a, b and c. The values of a, b and c can be substituted in terms of the coordinates of the centroid given as $x=\dfrac{a}{3},y=\dfrac{b}{3},z=\dfrac{c}{3}$ to get the final equation of the locus of the centroid.
Complete step by step solution:
Let the coordinates of the points A, B and C be $\left( a,0,0 \right)$, $\left( 0,b,0 \right)$ and $\left( 0,0,c \right)$, so that the plane will look like
Therefore, the x coordinate of the triangle ABC becomes
$\begin{align}
& \Rightarrow x=\dfrac{a+0+0}{3} \\
& \Rightarrow x=\dfrac{a}{3}......\left( i \right) \\
\end{align}$
Similarly, the y and the z coordinates can be given by
$\begin{align}
& \Rightarrow y=\dfrac{b}{3}......\left( ii \right) \\
& \Rightarrow z=\dfrac{c}{3}......\left( iii \right) \\
\end{align}$
Multiplying the equation (i) by $3$ we get
$\Rightarrow a=3x......\left( iv \right)$
Similarly, from the equations (ii) and (iii) we obtain
$\begin{align}
& \Rightarrow b=3y.......\left( v \right) \\
& \Rightarrow c=3z.......\left( vi \right) \\
\end{align}$
From the intercept form of the equation of a plane, we can write the equation of the given plane as
$\begin{align}
& \Rightarrow \dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1 \\
& \Rightarrow \dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}-1=0 \\
\end{align}$
According to the question, the distance of the plane from the origin is equal to p. Thereofr, we can write
$\begin{align}
& \Rightarrow p=\dfrac{\left| \dfrac{0}{a}+\dfrac{0}{b}+\dfrac{0}{c}-1 \right|}{\sqrt{{{\left( \dfrac{1}{a} \right)}^{2}}+{{\left( \dfrac{1}{b} \right)}^{2}}+{{\left( \dfrac{1}{c} \right)}^{2}}}} \\
& \Rightarrow p=\dfrac{1}{\sqrt{{{\left( \dfrac{1}{a} \right)}^{2}}+{{\left( \dfrac{1}{b} \right)}^{2}}+{{\left( \dfrac{1}{c} \right)}^{2}}}} \\
\end{align}$
Taking the reciprocals of both the sides, we get
$\Rightarrow \dfrac{1}{p}=\sqrt{{{\left( \dfrac{1}{a} \right)}^{2}}+{{\left( \dfrac{1}{b} \right)}^{2}}+{{\left( \dfrac{1}{c} \right)}^{2}}}$
Now, taking the squares of both the sides, we get
$\begin{align}
& \Rightarrow {{\left( \dfrac{1}{p} \right)}^{2}}={{\left( \dfrac{1}{a} \right)}^{2}}+{{\left( \dfrac{1}{b} \right)}^{2}}+{{\left( \dfrac{1}{c} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{{{p}^{2}}}=\dfrac{1}{{{a}^{2}}}+\dfrac{1}{{{b}^{2}}}+\dfrac{1}{{{c}^{2}}} \\
\end{align}$
Substituting the equations (iv), (v) and (vi) we get
\[\begin{align}
& \Rightarrow \dfrac{1}{{{p}^{2}}}=\dfrac{1}{{{\left( 3x \right)}^{2}}}+\dfrac{1}{{{\left( 3y \right)}^{2}}}+\dfrac{1}{{{\left( 3z \right)}^{2}}} \\
& \Rightarrow \dfrac{1}{{{p}^{2}}}=\dfrac{1}{9{{x}^{2}}}+\dfrac{1}{9{{y}^{2}}}+\dfrac{1}{9{{z}^{2}}} \\
\end{align}\]
Multiplying both sides by \[9\] we get
$\begin{align}
& \Rightarrow \dfrac{9}{{{p}^{2}}}=\dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{y}^{2}}}+\dfrac{1}{{{z}^{2}}} \\
& \Rightarrow 9{{p}^{-2}}={{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}} \\
& \Rightarrow {{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}}=9{{p}^{-2}} \\
\end{align}$
Thus, the locus of the triangle ABC is found out to be ${{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}}=9{{p}^{-2}}$.
So, the correct answer is “Option d”.
Note: For solving these kinds of questions, we need to remember the different forms of the equation of a plane. Also, we need to remember the coordinates of the centroid of a triangle, which are equal to the average of the coordinates of its vertices. Do not forget the square root sign in the distance formula.
Complete step by step solution:
Let the coordinates of the points A, B and C be $\left( a,0,0 \right)$, $\left( 0,b,0 \right)$ and $\left( 0,0,c \right)$, so that the plane will look like
Therefore, the x coordinate of the triangle ABC becomes
$\begin{align}
& \Rightarrow x=\dfrac{a+0+0}{3} \\
& \Rightarrow x=\dfrac{a}{3}......\left( i \right) \\
\end{align}$
Similarly, the y and the z coordinates can be given by
$\begin{align}
& \Rightarrow y=\dfrac{b}{3}......\left( ii \right) \\
& \Rightarrow z=\dfrac{c}{3}......\left( iii \right) \\
\end{align}$
Multiplying the equation (i) by $3$ we get
$\Rightarrow a=3x......\left( iv \right)$
Similarly, from the equations (ii) and (iii) we obtain
$\begin{align}
& \Rightarrow b=3y.......\left( v \right) \\
& \Rightarrow c=3z.......\left( vi \right) \\
\end{align}$
From the intercept form of the equation of a plane, we can write the equation of the given plane as
$\begin{align}
& \Rightarrow \dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1 \\
& \Rightarrow \dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}-1=0 \\
\end{align}$
According to the question, the distance of the plane from the origin is equal to p. Thereofr, we can write
$\begin{align}
& \Rightarrow p=\dfrac{\left| \dfrac{0}{a}+\dfrac{0}{b}+\dfrac{0}{c}-1 \right|}{\sqrt{{{\left( \dfrac{1}{a} \right)}^{2}}+{{\left( \dfrac{1}{b} \right)}^{2}}+{{\left( \dfrac{1}{c} \right)}^{2}}}} \\
& \Rightarrow p=\dfrac{1}{\sqrt{{{\left( \dfrac{1}{a} \right)}^{2}}+{{\left( \dfrac{1}{b} \right)}^{2}}+{{\left( \dfrac{1}{c} \right)}^{2}}}} \\
\end{align}$
Taking the reciprocals of both the sides, we get
$\Rightarrow \dfrac{1}{p}=\sqrt{{{\left( \dfrac{1}{a} \right)}^{2}}+{{\left( \dfrac{1}{b} \right)}^{2}}+{{\left( \dfrac{1}{c} \right)}^{2}}}$
Now, taking the squares of both the sides, we get
$\begin{align}
& \Rightarrow {{\left( \dfrac{1}{p} \right)}^{2}}={{\left( \dfrac{1}{a} \right)}^{2}}+{{\left( \dfrac{1}{b} \right)}^{2}}+{{\left( \dfrac{1}{c} \right)}^{2}} \\
& \Rightarrow \dfrac{1}{{{p}^{2}}}=\dfrac{1}{{{a}^{2}}}+\dfrac{1}{{{b}^{2}}}+\dfrac{1}{{{c}^{2}}} \\
\end{align}$
Substituting the equations (iv), (v) and (vi) we get
\[\begin{align}
& \Rightarrow \dfrac{1}{{{p}^{2}}}=\dfrac{1}{{{\left( 3x \right)}^{2}}}+\dfrac{1}{{{\left( 3y \right)}^{2}}}+\dfrac{1}{{{\left( 3z \right)}^{2}}} \\
& \Rightarrow \dfrac{1}{{{p}^{2}}}=\dfrac{1}{9{{x}^{2}}}+\dfrac{1}{9{{y}^{2}}}+\dfrac{1}{9{{z}^{2}}} \\
\end{align}\]
Multiplying both sides by \[9\] we get
$\begin{align}
& \Rightarrow \dfrac{9}{{{p}^{2}}}=\dfrac{1}{{{x}^{2}}}+\dfrac{1}{{{y}^{2}}}+\dfrac{1}{{{z}^{2}}} \\
& \Rightarrow 9{{p}^{-2}}={{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}} \\
& \Rightarrow {{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}}=9{{p}^{-2}} \\
\end{align}$
Thus, the locus of the triangle ABC is found out to be ${{x}^{-2}}+{{y}^{-2}}+{{z}^{-2}}=9{{p}^{-2}}$.
So, the correct answer is “Option d”.
Note: For solving these kinds of questions, we need to remember the different forms of the equation of a plane. Also, we need to remember the coordinates of the centroid of a triangle, which are equal to the average of the coordinates of its vertices. Do not forget the square root sign in the distance formula.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

