
A variable circle passes through a fixed point $A\left( p,q \right)$ and touches the X-axis. The locus of the other end of the diameter thorough A is
A. ${{\left( x-p \right)}^{2}}=4qy$
B. ${{\left( x-q \right)}^{2}}=4py$
C. ${{\left( y-p \right)}^{2}}=4qx$
D. ${{\left( y-q \right)}^{2}}=4px$
Answer
497.4k+ views
Hint: We first take the general form of the circle and find the condition for it touching the X-axis. We take the other end of the diameter and use the centre to place the points in the equation. The new form gives us the locus for the other end of the diameter.
Complete answer:
The general equation of a circle is ${{\left( x+g \right)}^{2}}+{{\left( y+f \right)}^{2}}={{r}^{2}}$ with $O\left( -g,-f \right)$ being centre and $r$ being the radius.
As the circle touches X-axis, the y coordinate of the centre becomes the radius. So, ${{r}^{2}}={{f}^{2}}$.
$\begin{align}
& {{\left( x+g \right)}^{2}}+{{\left( y+f \right)}^{2}}={{r}^{2}} \\
& \Rightarrow {{\left( x+g \right)}^{2}}+{{\left( y+f \right)}^{2}}={{f}^{2}} \\
& \Rightarrow {{\left( x+g \right)}^{2}}+{{y}^{2}}+2fy=0 \\
\end{align}$
The point $A\left( p,q \right)$ passes through the circle ${{\left( x+g \right)}^{2}}+{{y}^{2}}+2fy=0$.
So, ${{\left( p+g \right)}^{2}}+{{q}^{2}}+2fq=0$.
Now let us assume the other end of the diameter thorough $A\left( p,q \right)$ is $B\left( h,k \right)$.
Therefore, the middle point of the points $A\left( p,q \right)$ and $B\left( h,k \right)$ is $O\left( -g,-f \right)$.
The formula gives us $\dfrac{p+h}{2}=-g$ and $\dfrac{q+k}{2}=-f$. We get $2f=-\left( q+k \right)$.
We put the values in the equation of ${{\left( p+g \right)}^{2}}+{{q}^{2}}+2fq=0$.
$\begin{align}
& {{\left( p+g \right)}^{2}}+{{q}^{2}}+2fq=0 \\
& \Rightarrow {{\left( p-\dfrac{p+h}{2} \right)}^{2}}+{{q}^{2}}-q\left( q+k \right)=0 \\
\end{align}$
We now simplify the equation to get the locus.
$\begin{align}
& {{\left( p-\dfrac{p+h}{2} \right)}^{2}}+{{q}^{2}}-q\left( q+k \right)=0 \\
& \Rightarrow {{\left( \dfrac{p-h}{2} \right)}^{2}}+{{q}^{2}}-{{q}^{2}}-qk=0 \\
& \Rightarrow \dfrac{{{\left( p-h \right)}^{2}}}{4}=qk \\
& \Rightarrow {{\left( h-p \right)}^{2}}=4qk \\
\end{align}$
Now taking the conventional terms for $B\left( h,k \right)$ we get ${{\left( x-p \right)}^{2}}=4qy$. The correct option is A.
Note:
We need to remember the condition for touching the X or Y-axis for a circle. The conditions are ${{g}^{2}}=c$ and ${{f}^{2}}=c$ respectively for circle’s equation ${{x}^{2}}+2gx+{{y}^{2}}+2fy+c=0$.
Complete answer:
The general equation of a circle is ${{\left( x+g \right)}^{2}}+{{\left( y+f \right)}^{2}}={{r}^{2}}$ with $O\left( -g,-f \right)$ being centre and $r$ being the radius.
As the circle touches X-axis, the y coordinate of the centre becomes the radius. So, ${{r}^{2}}={{f}^{2}}$.
$\begin{align}
& {{\left( x+g \right)}^{2}}+{{\left( y+f \right)}^{2}}={{r}^{2}} \\
& \Rightarrow {{\left( x+g \right)}^{2}}+{{\left( y+f \right)}^{2}}={{f}^{2}} \\
& \Rightarrow {{\left( x+g \right)}^{2}}+{{y}^{2}}+2fy=0 \\
\end{align}$
The point $A\left( p,q \right)$ passes through the circle ${{\left( x+g \right)}^{2}}+{{y}^{2}}+2fy=0$.
So, ${{\left( p+g \right)}^{2}}+{{q}^{2}}+2fq=0$.
Now let us assume the other end of the diameter thorough $A\left( p,q \right)$ is $B\left( h,k \right)$.
Therefore, the middle point of the points $A\left( p,q \right)$ and $B\left( h,k \right)$ is $O\left( -g,-f \right)$.
The formula gives us $\dfrac{p+h}{2}=-g$ and $\dfrac{q+k}{2}=-f$. We get $2f=-\left( q+k \right)$.
We put the values in the equation of ${{\left( p+g \right)}^{2}}+{{q}^{2}}+2fq=0$.
$\begin{align}
& {{\left( p+g \right)}^{2}}+{{q}^{2}}+2fq=0 \\
& \Rightarrow {{\left( p-\dfrac{p+h}{2} \right)}^{2}}+{{q}^{2}}-q\left( q+k \right)=0 \\
\end{align}$
We now simplify the equation to get the locus.
$\begin{align}
& {{\left( p-\dfrac{p+h}{2} \right)}^{2}}+{{q}^{2}}-q\left( q+k \right)=0 \\
& \Rightarrow {{\left( \dfrac{p-h}{2} \right)}^{2}}+{{q}^{2}}-{{q}^{2}}-qk=0 \\
& \Rightarrow \dfrac{{{\left( p-h \right)}^{2}}}{4}=qk \\
& \Rightarrow {{\left( h-p \right)}^{2}}=4qk \\
\end{align}$
Now taking the conventional terms for $B\left( h,k \right)$ we get ${{\left( x-p \right)}^{2}}=4qy$. The correct option is A.
Note:
We need to remember the condition for touching the X or Y-axis for a circle. The conditions are ${{g}^{2}}=c$ and ${{f}^{2}}=c$ respectively for circle’s equation ${{x}^{2}}+2gx+{{y}^{2}}+2fy+c=0$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

