
A variable circle passes through a fixed point $A\left( p,q \right)$ and touches the X-axis. The locus of the other end of the diameter thorough A is
A. ${{\left( x-p \right)}^{2}}=4qy$
B. ${{\left( x-q \right)}^{2}}=4py$
C. ${{\left( y-p \right)}^{2}}=4qx$
D. ${{\left( y-q \right)}^{2}}=4px$
Answer
482.1k+ views
Hint: We first take the general form of the circle and find the condition for it touching the X-axis. We take the other end of the diameter and use the centre to place the points in the equation. The new form gives us the locus for the other end of the diameter.
Complete answer:
The general equation of a circle is ${{\left( x+g \right)}^{2}}+{{\left( y+f \right)}^{2}}={{r}^{2}}$ with $O\left( -g,-f \right)$ being centre and $r$ being the radius.
As the circle touches X-axis, the y coordinate of the centre becomes the radius. So, ${{r}^{2}}={{f}^{2}}$.
$\begin{align}
& {{\left( x+g \right)}^{2}}+{{\left( y+f \right)}^{2}}={{r}^{2}} \\
& \Rightarrow {{\left( x+g \right)}^{2}}+{{\left( y+f \right)}^{2}}={{f}^{2}} \\
& \Rightarrow {{\left( x+g \right)}^{2}}+{{y}^{2}}+2fy=0 \\
\end{align}$
The point $A\left( p,q \right)$ passes through the circle ${{\left( x+g \right)}^{2}}+{{y}^{2}}+2fy=0$.
So, ${{\left( p+g \right)}^{2}}+{{q}^{2}}+2fq=0$.
Now let us assume the other end of the diameter thorough $A\left( p,q \right)$ is $B\left( h,k \right)$.
Therefore, the middle point of the points $A\left( p,q \right)$ and $B\left( h,k \right)$ is $O\left( -g,-f \right)$.
The formula gives us $\dfrac{p+h}{2}=-g$ and $\dfrac{q+k}{2}=-f$. We get $2f=-\left( q+k \right)$.
We put the values in the equation of ${{\left( p+g \right)}^{2}}+{{q}^{2}}+2fq=0$.
$\begin{align}
& {{\left( p+g \right)}^{2}}+{{q}^{2}}+2fq=0 \\
& \Rightarrow {{\left( p-\dfrac{p+h}{2} \right)}^{2}}+{{q}^{2}}-q\left( q+k \right)=0 \\
\end{align}$
We now simplify the equation to get the locus.
$\begin{align}
& {{\left( p-\dfrac{p+h}{2} \right)}^{2}}+{{q}^{2}}-q\left( q+k \right)=0 \\
& \Rightarrow {{\left( \dfrac{p-h}{2} \right)}^{2}}+{{q}^{2}}-{{q}^{2}}-qk=0 \\
& \Rightarrow \dfrac{{{\left( p-h \right)}^{2}}}{4}=qk \\
& \Rightarrow {{\left( h-p \right)}^{2}}=4qk \\
\end{align}$
Now taking the conventional terms for $B\left( h,k \right)$ we get ${{\left( x-p \right)}^{2}}=4qy$. The correct option is A.
Note:
We need to remember the condition for touching the X or Y-axis for a circle. The conditions are ${{g}^{2}}=c$ and ${{f}^{2}}=c$ respectively for circle’s equation ${{x}^{2}}+2gx+{{y}^{2}}+2fy+c=0$.
Complete answer:
The general equation of a circle is ${{\left( x+g \right)}^{2}}+{{\left( y+f \right)}^{2}}={{r}^{2}}$ with $O\left( -g,-f \right)$ being centre and $r$ being the radius.
As the circle touches X-axis, the y coordinate of the centre becomes the radius. So, ${{r}^{2}}={{f}^{2}}$.
$\begin{align}
& {{\left( x+g \right)}^{2}}+{{\left( y+f \right)}^{2}}={{r}^{2}} \\
& \Rightarrow {{\left( x+g \right)}^{2}}+{{\left( y+f \right)}^{2}}={{f}^{2}} \\
& \Rightarrow {{\left( x+g \right)}^{2}}+{{y}^{2}}+2fy=0 \\
\end{align}$
The point $A\left( p,q \right)$ passes through the circle ${{\left( x+g \right)}^{2}}+{{y}^{2}}+2fy=0$.
So, ${{\left( p+g \right)}^{2}}+{{q}^{2}}+2fq=0$.
Now let us assume the other end of the diameter thorough $A\left( p,q \right)$ is $B\left( h,k \right)$.
Therefore, the middle point of the points $A\left( p,q \right)$ and $B\left( h,k \right)$ is $O\left( -g,-f \right)$.
The formula gives us $\dfrac{p+h}{2}=-g$ and $\dfrac{q+k}{2}=-f$. We get $2f=-\left( q+k \right)$.
We put the values in the equation of ${{\left( p+g \right)}^{2}}+{{q}^{2}}+2fq=0$.
$\begin{align}
& {{\left( p+g \right)}^{2}}+{{q}^{2}}+2fq=0 \\
& \Rightarrow {{\left( p-\dfrac{p+h}{2} \right)}^{2}}+{{q}^{2}}-q\left( q+k \right)=0 \\
\end{align}$
We now simplify the equation to get the locus.
$\begin{align}
& {{\left( p-\dfrac{p+h}{2} \right)}^{2}}+{{q}^{2}}-q\left( q+k \right)=0 \\
& \Rightarrow {{\left( \dfrac{p-h}{2} \right)}^{2}}+{{q}^{2}}-{{q}^{2}}-qk=0 \\
& \Rightarrow \dfrac{{{\left( p-h \right)}^{2}}}{4}=qk \\
& \Rightarrow {{\left( h-p \right)}^{2}}=4qk \\
\end{align}$
Now taking the conventional terms for $B\left( h,k \right)$ we get ${{\left( x-p \right)}^{2}}=4qy$. The correct option is A.
Note:
We need to remember the condition for touching the X or Y-axis for a circle. The conditions are ${{g}^{2}}=c$ and ${{f}^{2}}=c$ respectively for circle’s equation ${{x}^{2}}+2gx+{{y}^{2}}+2fy+c=0$.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

