
A variable capacitor is kept connected to a \[10V\] battery. If the capacitance of the capacitor is changed from \[7\mu F{\text{ }}to 3\mu F\], the change in energy of the capacitor is:
A. \[2 \times {10^{ - 4}}{\text{ }}J\]
B. \[4 \times {10^{ - 4}}{\text{ }}J\]
C. \[6 \times {10^{ - 4}}{\text{ }}J\]
D. \[8 \times {10^{ - 4}}{\text{ }}J\]
Answer
568.8k+ views
Hint: The energy stored on a capacitor or P.E. are often expressed in terms of the work done by a battery, where the voltage represents energy per unit charge. The voltage V is proportional to the quantity of charge which is already on the capacitor. Its expression is:
\[Capacitor{\text{ }}energy{\text{ }}\left( E \right){\text{ }} = {\text{ }}1/2{\text{ }}\left( {capacitance} \right)\;{\left( {voltage} \right)^2}\]
Complete step by step answer:Given that:
\[
Battery{\text{ }}Voltage{\text{ }}\left( V \right) = {\text{ }}10V \\
\begin{array}{*{20}{l}}
{Capacitance{\text{ }}of{\text{ }}capacitor{\text{ }}initially{\text{ }}\left( {C_1} \right) = {\text{ }}7\mu F} \\
{\;Capacitance{\text{ }}of{\text{ }}capacitor{\text{ }}after{\text{ }}\left( {C_2} \right){\text{ }} = {\text{ }}3\mu F}
\end{array} \\
\]
A capacitor is a device to store energy. The process of charging up a capacitor involves the transferring of electric charges from one plate to a different.
The work wiped out in charging the capacitor is stored as its electrical P. E.
We will first find energy at initial when capacitance of capacitor $(C_1)$ was \[7\mu F{\text{ }}\]: \[Capacitor{\text{ }}energy{\text{ }}\left( E \right){\text{ }} = {\text{ }}1/2{\text{ }}\left( {capacitance} \right)\;{\left( {voltage} \right)^2}\]
Where C = Capacitance
V= Voltage
\[\begin{array}{*{20}{l}}
{Capacitor{\text{ }}energy{\text{ }}at{\text{ }}initially{\text{ }}\left( {E_1} \right){\text{ }} = {\text{ }}1/2{\text{ }}\left( {C_1} \right)\;{{\left( V \right)}^2}} \\
{Capacitor{\text{ }}energy{\text{ }}at{\text{ }}initially{\text{ }}\left( {E_1} \right){\text{ }} = {\text{ }}1/2{\text{ }}\left( {7 \times {{10}^{ - 6}}} \right){{\left( {10} \right)}^2}{\text{ }} = {\text{ }}3.5\; \times {{10}^{ - 4}}{\text{ }}J}
\end{array}\]
Now let’s find energy after change when capacitance of capacitor ($C_2$) becomes 3μ F:
\[Capacitor{\text{ }}energy{\text{ }}\left( E \right){\text{ }} = {\text{ }}1/2{\text{ }}\left( {capacitance} \right)\;{\left( {voltage} \right)^2}\]
Where C = Capacitance
V= Voltage
\[\begin{array}{*{20}{l}}
{Capacitor{\text{ }}energy{\text{ }}at{\text{ }}initially{\text{ }}\left( {E_2} \right){\text{ }} = {\text{ }}1/2{\text{ }}\left( {C_2} \right)\;{{\left( V \right)}^2}} \\
{Capacitor{\text{ }}energy{\text{ }}at{\text{ }}initially{\text{ }}\left( {E_2} \right){\text{ }} = {\text{ }}1/2{\text{ }}\left( {3 \times {{10}^{ - 6}}} \right){{\left( {10} \right)}^2}{\text{ }} = {\text{ 1}}.5\; \times {{10}^{ - 4}}{\text{ }}J}
\end{array}\]
change in energy of the capacitor when capacitance of the capacitor is changed from \[7\mu F {\text{ }}to3\mu F\]
\[
Change{\text{ }}in{\text{ }}Energy{\text{ }}\left( {\Delta E} \right){\text{ }} = {\text{ }}E_1 - {\text{ }}E_2{\text{ }} = {\text{ }}3.5 \times \;{10^{ - 4}}{\text{ }}J{\text{ }} - {\text{ }}1.5 \times \;{10^{ - 4}}J{\text{ }} = {\text{ }}2 \times {10^{ - 4}}{\text{ }}J \\
Change{\text{ }}in{\text{ }}Energy{\text{ }}\left( {\Delta E} \right){\text{ }}is{\text{ }}2\; \times {10^{ - 4}}J \\
\]
∴ Option (A) is Correct.
Note:The voltage (V) in the capacitor directly is proportional to the amount of charge which is already on the capacitor.
The energy stored in the capacitor is directly proportional to the capacitor and directly proportional to the square of the voltage. Since the voltage is unchanged, the change in energy stored is directly proportional to the capacitor only. So, the change in energy is solely caused by change in the underlying capacitor.
\[Capacitor{\text{ }}energy{\text{ }}\left( E \right){\text{ }} = {\text{ }}1/2{\text{ }}\left( {capacitance} \right)\;{\left( {voltage} \right)^2}\]
Complete step by step answer:Given that:
\[
Battery{\text{ }}Voltage{\text{ }}\left( V \right) = {\text{ }}10V \\
\begin{array}{*{20}{l}}
{Capacitance{\text{ }}of{\text{ }}capacitor{\text{ }}initially{\text{ }}\left( {C_1} \right) = {\text{ }}7\mu F} \\
{\;Capacitance{\text{ }}of{\text{ }}capacitor{\text{ }}after{\text{ }}\left( {C_2} \right){\text{ }} = {\text{ }}3\mu F}
\end{array} \\
\]
A capacitor is a device to store energy. The process of charging up a capacitor involves the transferring of electric charges from one plate to a different.
The work wiped out in charging the capacitor is stored as its electrical P. E.
We will first find energy at initial when capacitance of capacitor $(C_1)$ was \[7\mu F{\text{ }}\]: \[Capacitor{\text{ }}energy{\text{ }}\left( E \right){\text{ }} = {\text{ }}1/2{\text{ }}\left( {capacitance} \right)\;{\left( {voltage} \right)^2}\]
Where C = Capacitance
V= Voltage
\[\begin{array}{*{20}{l}}
{Capacitor{\text{ }}energy{\text{ }}at{\text{ }}initially{\text{ }}\left( {E_1} \right){\text{ }} = {\text{ }}1/2{\text{ }}\left( {C_1} \right)\;{{\left( V \right)}^2}} \\
{Capacitor{\text{ }}energy{\text{ }}at{\text{ }}initially{\text{ }}\left( {E_1} \right){\text{ }} = {\text{ }}1/2{\text{ }}\left( {7 \times {{10}^{ - 6}}} \right){{\left( {10} \right)}^2}{\text{ }} = {\text{ }}3.5\; \times {{10}^{ - 4}}{\text{ }}J}
\end{array}\]
Now let’s find energy after change when capacitance of capacitor ($C_2$) becomes 3μ F:
\[Capacitor{\text{ }}energy{\text{ }}\left( E \right){\text{ }} = {\text{ }}1/2{\text{ }}\left( {capacitance} \right)\;{\left( {voltage} \right)^2}\]
Where C = Capacitance
V= Voltage
\[\begin{array}{*{20}{l}}
{Capacitor{\text{ }}energy{\text{ }}at{\text{ }}initially{\text{ }}\left( {E_2} \right){\text{ }} = {\text{ }}1/2{\text{ }}\left( {C_2} \right)\;{{\left( V \right)}^2}} \\
{Capacitor{\text{ }}energy{\text{ }}at{\text{ }}initially{\text{ }}\left( {E_2} \right){\text{ }} = {\text{ }}1/2{\text{ }}\left( {3 \times {{10}^{ - 6}}} \right){{\left( {10} \right)}^2}{\text{ }} = {\text{ 1}}.5\; \times {{10}^{ - 4}}{\text{ }}J}
\end{array}\]
change in energy of the capacitor when capacitance of the capacitor is changed from \[7\mu F {\text{ }}to3\mu F\]
\[
Change{\text{ }}in{\text{ }}Energy{\text{ }}\left( {\Delta E} \right){\text{ }} = {\text{ }}E_1 - {\text{ }}E_2{\text{ }} = {\text{ }}3.5 \times \;{10^{ - 4}}{\text{ }}J{\text{ }} - {\text{ }}1.5 \times \;{10^{ - 4}}J{\text{ }} = {\text{ }}2 \times {10^{ - 4}}{\text{ }}J \\
Change{\text{ }}in{\text{ }}Energy{\text{ }}\left( {\Delta E} \right){\text{ }}is{\text{ }}2\; \times {10^{ - 4}}J \\
\]
∴ Option (A) is Correct.
Note:The voltage (V) in the capacitor directly is proportional to the amount of charge which is already on the capacitor.
The energy stored in the capacitor is directly proportional to the capacitor and directly proportional to the square of the voltage. Since the voltage is unchanged, the change in energy stored is directly proportional to the capacitor only. So, the change in energy is solely caused by change in the underlying capacitor.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

