
A value of $\theta \in \left( 0,\pi /3 \right)$, for which $\left| \begin{matrix}
1+{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 4\cos 6\theta \\
{{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta & 4\cos 6\theta \\
{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\
\end{matrix} \right|=0$, is
$\text{(A) }\dfrac{7\pi }{24}$
$\text{(B) }\dfrac{\pi }{18}$
$\text{(C) }\dfrac{\pi }{9}$
$\text{(D) }\dfrac{7\pi }{36}$
Answer
545.4k+ views
Hint: In this question we are given a determinant which has trigonometric functions in it. We are given that the modulus value of the given determinant is $0$. Now we can use the approach of directly calculating the mod but we will first simplify the determinant using row transformations and then find then equate the value of the mod with $0$ and then find the value of $\theta $ such that it belongs in the range of $\left( 0,\pi /3 \right)$.
Complete step by step solution:
We have the determinant given to us as:
$\Rightarrow \left| \begin{matrix}
1+{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 4\cos 6\theta \\
{{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta & 4\cos 6\theta \\
{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\
\end{matrix} \right|=0$
Now on doing the transformation ${{R}_{1}}\to {{R}_{1}}-{{R}_{2}}$
$\Rightarrow \left| \begin{matrix}
1+{{\cos }^{2}}\theta -\left( {{\cos }^{2}}\theta \right) & {{\sin }^{2}}\theta -\left( 1+{{\sin }^{2}}\theta \right) & 4\cos 6\theta -\left( 4\cos 6\theta \right) \\
{{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta & 4\cos 6\theta \\
{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\
\end{matrix} \right|=0$
On opening the brackets, we get:
$\Rightarrow \left| \begin{matrix}
1+{{\cos }^{2}}\theta -{{\cos }^{2}}\theta & {{\sin }^{2}}\theta -1-{{\sin }^{2}}\theta & 4\cos 6\theta -4\cos 6\theta \\
{{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta & 4\cos 6\theta \\
{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\
\end{matrix} \right|=0$
Now since the same terms with opposite signs cancel each other, we get:
$\Rightarrow \left| \begin{matrix}
1 & -1 & 0 \\
{{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta & 4\cos 6\theta \\
{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\
\end{matrix} \right|=0$
Now on doing the transformation ${{R}_{2}}\to {{R}_{2}}-{{R}_{3}}$
$\Rightarrow \left| \begin{matrix}
1 & -1 & 0 \\
{{\cos }^{2}}\theta -\left( {{\cos }^{2}}\theta \right) & 1+{{\sin }^{2}}\theta -\left( {{\sin }^{2}}\theta \right) & 4\cos 6\theta -\left( 1+4\cos 6\theta \right) \\
{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\
\end{matrix} \right|=0$
On opening the brackets, we get:
$\Rightarrow \left| \begin{matrix}
1 & -1 & 0 \\
{{\cos }^{2}}\theta -{{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta -{{\sin }^{2}}\theta & 4\cos 6\theta -1-4\cos 6\theta \\
{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\
\end{matrix} \right|=0$
Now since the same terms with opposite signs cancel each other, we get:
\[\Rightarrow \left| \begin{matrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\
\end{matrix} \right|=0\]
Now on taking the mod of the determinant, we get:
$\Rightarrow 1\left( \left( \left( 1 \right)\times \left( 1+4\cos 6\theta \right) \right)-\left( \left( -1 \right)\times \left( {{\sin }^{2}}\theta \right) \right) \right)-\left( -1 \right)\left( 0- \left(-{{\cos }^{2}}\theta\right) \right)+0=0$
On opening the brackets, we get:
$\Rightarrow 1\left( 1+4\cos 6\theta -\left( -{{\sin }^{2}}\theta \right) \right)+1\left( {{\cos }^{2}}\theta \right)=0$
On further simplifying, we get:
\[\Rightarrow 1+4\cos 6\theta +{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =0\]
Now we know the trigonometric identity that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ therefore, on using this identity, we get:
$\Rightarrow 1+4\cos 6\theta +1=0$
On simplifying, we get:
$\Rightarrow 2+4\cos 6\theta =0$
On dividing the expression by $2$, we get:
$\Rightarrow 1+2\cos 6\theta =0$
On transferring the term $1$ from the left-hand side to the right-hand side, we get:
$\Rightarrow 2\cos 6\theta =-1$
On transferring the term $2$ from the left-hand side to the right-hand side, we get:
$\Rightarrow \cos 6\theta =\dfrac{-1}{2}$
Now we know that $\cos x=\dfrac{-1}{2}$ when the value of $x=\dfrac{2\pi }{3}$.
Now since $\cos 6\theta =\dfrac{-1}{2}$, we can conclude that:
$\Rightarrow 6\theta =\dfrac{2\pi }{3}$
On transferring the term $6$ from the left-hand side to the right-hand side, we get:
$\Rightarrow \theta =\dfrac{2\pi }{3\times 6}$
On simplifying, we get:
$\Rightarrow \theta =\dfrac{2\pi }{18}$
On simplifying, we get:
$\Rightarrow \theta =\dfrac{\pi }{9}$, which lies in the domain $\theta \in \left( 0,\pi /3 \right)$, therefore, it is the required solution.
Therefore, the correct option is $\left( C \right)$.
Note: It is to be remembered that in this question we have used row transformation. There also exists column transformations which use columns instead of rows. It is to be noted that doing row or column transformations on a determinant do not change its final value. The mod of the determinant is the value that the determinant holds. For a determinant $A$, the notation of its mod will be $\left| A \right|$.
Complete step by step solution:
We have the determinant given to us as:
$\Rightarrow \left| \begin{matrix}
1+{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 4\cos 6\theta \\
{{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta & 4\cos 6\theta \\
{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\
\end{matrix} \right|=0$
Now on doing the transformation ${{R}_{1}}\to {{R}_{1}}-{{R}_{2}}$
$\Rightarrow \left| \begin{matrix}
1+{{\cos }^{2}}\theta -\left( {{\cos }^{2}}\theta \right) & {{\sin }^{2}}\theta -\left( 1+{{\sin }^{2}}\theta \right) & 4\cos 6\theta -\left( 4\cos 6\theta \right) \\
{{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta & 4\cos 6\theta \\
{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\
\end{matrix} \right|=0$
On opening the brackets, we get:
$\Rightarrow \left| \begin{matrix}
1+{{\cos }^{2}}\theta -{{\cos }^{2}}\theta & {{\sin }^{2}}\theta -1-{{\sin }^{2}}\theta & 4\cos 6\theta -4\cos 6\theta \\
{{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta & 4\cos 6\theta \\
{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\
\end{matrix} \right|=0$
Now since the same terms with opposite signs cancel each other, we get:
$\Rightarrow \left| \begin{matrix}
1 & -1 & 0 \\
{{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta & 4\cos 6\theta \\
{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\
\end{matrix} \right|=0$
Now on doing the transformation ${{R}_{2}}\to {{R}_{2}}-{{R}_{3}}$
$\Rightarrow \left| \begin{matrix}
1 & -1 & 0 \\
{{\cos }^{2}}\theta -\left( {{\cos }^{2}}\theta \right) & 1+{{\sin }^{2}}\theta -\left( {{\sin }^{2}}\theta \right) & 4\cos 6\theta -\left( 1+4\cos 6\theta \right) \\
{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\
\end{matrix} \right|=0$
On opening the brackets, we get:
$\Rightarrow \left| \begin{matrix}
1 & -1 & 0 \\
{{\cos }^{2}}\theta -{{\cos }^{2}}\theta & 1+{{\sin }^{2}}\theta -{{\sin }^{2}}\theta & 4\cos 6\theta -1-4\cos 6\theta \\
{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\
\end{matrix} \right|=0$
Now since the same terms with opposite signs cancel each other, we get:
\[\Rightarrow \left| \begin{matrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
{{\cos }^{2}}\theta & {{\sin }^{2}}\theta & 1+4\cos 6\theta \\
\end{matrix} \right|=0\]
Now on taking the mod of the determinant, we get:
$\Rightarrow 1\left( \left( \left( 1 \right)\times \left( 1+4\cos 6\theta \right) \right)-\left( \left( -1 \right)\times \left( {{\sin }^{2}}\theta \right) \right) \right)-\left( -1 \right)\left( 0- \left(-{{\cos }^{2}}\theta\right) \right)+0=0$
On opening the brackets, we get:
$\Rightarrow 1\left( 1+4\cos 6\theta -\left( -{{\sin }^{2}}\theta \right) \right)+1\left( {{\cos }^{2}}\theta \right)=0$
On further simplifying, we get:
\[\Rightarrow 1+4\cos 6\theta +{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =0\]
Now we know the trigonometric identity that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ therefore, on using this identity, we get:
$\Rightarrow 1+4\cos 6\theta +1=0$
On simplifying, we get:
$\Rightarrow 2+4\cos 6\theta =0$
On dividing the expression by $2$, we get:
$\Rightarrow 1+2\cos 6\theta =0$
On transferring the term $1$ from the left-hand side to the right-hand side, we get:
$\Rightarrow 2\cos 6\theta =-1$
On transferring the term $2$ from the left-hand side to the right-hand side, we get:
$\Rightarrow \cos 6\theta =\dfrac{-1}{2}$
Now we know that $\cos x=\dfrac{-1}{2}$ when the value of $x=\dfrac{2\pi }{3}$.
Now since $\cos 6\theta =\dfrac{-1}{2}$, we can conclude that:
$\Rightarrow 6\theta =\dfrac{2\pi }{3}$
On transferring the term $6$ from the left-hand side to the right-hand side, we get:
$\Rightarrow \theta =\dfrac{2\pi }{3\times 6}$
On simplifying, we get:
$\Rightarrow \theta =\dfrac{2\pi }{18}$
On simplifying, we get:
$\Rightarrow \theta =\dfrac{\pi }{9}$, which lies in the domain $\theta \in \left( 0,\pi /3 \right)$, therefore, it is the required solution.
Therefore, the correct option is $\left( C \right)$.
Note: It is to be remembered that in this question we have used row transformation. There also exists column transformations which use columns instead of rows. It is to be noted that doing row or column transformations on a determinant do not change its final value. The mod of the determinant is the value that the determinant holds. For a determinant $A$, the notation of its mod will be $\left| A \right|$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

