
A value of $\alpha $ such that $\int\limits_{\alpha }^{\alpha +1}{\dfrac{dx}{\left( x+\alpha \right)\left( x+\alpha +1 \right)}}={{\log }_{e}}\left( \dfrac{9}{8} \right)$ is
$\left( \text{A} \right)\text{ }\dfrac{\text{1}}{\text{2}}$
$\left( \text{B} \right)\text{ 2}$
$\left( C \right)\text{ -}\dfrac{\text{1}}{\text{2}}$
$\left( D \right)\text{ -2}$
Answer
545.4k+ views
Hint: In this question we have been given a definite integral which we will integrate with respect to $x$ and then we will equate both the sides of the expression to find the value of the term $\alpha $. We will integrate the term such that we get the left-hand side in the terms of a logarithm and then cancel out the logarithm.
Complete step by step solution:
We have the expression given as:
$\Rightarrow \int\limits_{\alpha }^{\alpha +1}{\dfrac{dx}{\left( x+\alpha \right)\left( x+\alpha +1 \right)}}={{\log }_{e}}\left( \dfrac{9}{8} \right)$
We can see that the expression cannot be integrated directly; we will convert the numerator of the expression in the form of the denominator.
We can write the numerator as:
$\Rightarrow \int\limits_{\alpha }^{\alpha +1}{\dfrac{\left( x+\alpha +1 \right)-\left( x+\alpha \right)dx}{\left( x+\alpha \right)\left( x+\alpha +1 \right)}}={{\log }_{e}}\left( \dfrac{9}{8} \right)$
We can see that by substituting this in the numerator, the value of the numerator does not change.
Now on splitting the term in the numerator, we get:
\[\Rightarrow \int\limits_{\alpha }^{\alpha +1}{\left[ \dfrac{\left( x+\alpha +1 \right)}{\left( x+\alpha \right)\left( x+\alpha +1 \right)}-\dfrac{\left( x+\alpha \right)}{\left( x+\alpha \right)\left( x+\alpha +1 \right)} \right]dx}={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
Now on cancelling the similar terms from the fraction, we get:
\[\Rightarrow \int\limits_{\alpha }^{\alpha +1}{\left[ \dfrac{1}{\left( x+\alpha \right)}-\dfrac{1}{\left( x+\alpha +1 \right)} \right]dx}={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
Now we know that $\int{\dfrac{dx}{\left( x+a \right)}=\log \left( x+a \right)}$ therefore, on using the formula, we get:
\[\Rightarrow \left[ {{\log }_{e}}\left( x+\alpha \right)-{{\log }_{e}}\left( x+\alpha +1 \right) \right]_{\alpha }^{\alpha +1}={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
Now we know the property of logarithm that ${{\log }_{e}}a-{{\log }_{e}}b={{\log }_{e}}\left( \dfrac{a}{b} \right)$ therefore, on using the property, we get:
\[\Rightarrow \left[ {{\log }_{e}}\left( \dfrac{x+\alpha }{x+\alpha +1} \right) \right]_{\alpha }^{\alpha +1}={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
Now on substituting the value of the limits, we get:
\[\Rightarrow \left[ {{\log }_{e}}\left( \dfrac{\left( \alpha +1 \right)+\alpha }{\left( \alpha +1 \right)+\alpha +1} \right) \right]-\left[ {{\log }_{e}}\left( \dfrac{\alpha +\alpha }{\alpha +\alpha +1} \right) \right]={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
On opening the brackets, we get:
\[\Rightarrow \left[ {{\log }_{e}}\left( \dfrac{\alpha +1+\alpha }{\alpha +1+\alpha +1} \right) \right]-\left[ {{\log }_{e}}\left( \dfrac{\alpha +\alpha }{\alpha +\alpha +1} \right) \right]={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
On adding the similar terms, we get:
\[\Rightarrow \left[ {{\log }_{e}}\left( \dfrac{2\alpha +1}{2\alpha +2} \right) \right]-\left[ {{\log }_{e}}\left( \dfrac{2\alpha }{2\alpha +1} \right) \right]={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
Now on applying the property of logarithm ${{\log }_{e}}a-{{\log }_{e}}b={{\log }_{e}}\left( \dfrac{a}{b} \right)$ on the above expression, we get:
\[\Rightarrow {{\log }_{e}}\left( \dfrac{\dfrac{2\alpha +1}{2\alpha +2}}{\dfrac{2\alpha }{2\alpha +1}} \right)={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
On simplifying the fraction, we get:
\[\Rightarrow {{\log }_{e}}\left( \dfrac{2\alpha +1}{2\alpha +2}\times \dfrac{2\alpha +1}{2\alpha } \right)={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
On simplifying terms by multiplying, we get:
\[\Rightarrow {{\log }_{e}}\left( \dfrac{{{\left( 2\alpha +1 \right)}^{2}}}{2\alpha \left( 2\alpha +2 \right)} \right)={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
on using the expansion formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ on the numerator, we get:
\[\Rightarrow {{\log }_{e}}\left( \dfrac{4{{\alpha }^{2}}+4\alpha +1}{2\alpha \left( 2\alpha +2 \right)} \right)={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
On multiplying the terms in the denominator, we get:
\[\Rightarrow {{\log }_{e}}\left( \dfrac{4{{\alpha }^{2}}+4\alpha +1}{4{{\alpha }^{2}}+4\alpha } \right)={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
Now since logarithm is present on both the sides, we can remove it and write the terms as:
\[\Rightarrow \dfrac{4{{\alpha }^{2}}+4\alpha +1}{4{{\alpha }^{2}}+4\alpha }=\dfrac{9}{8}\]
On taking $4$ common from the denominator, we get:
\[\Rightarrow \dfrac{4{{\alpha }^{2}}+4\alpha +1}{4\left( {{\alpha }^{2}}+\alpha \right)}=\dfrac{9}{8}\]
On simplifying, we get:
\[\Rightarrow \dfrac{4{{\alpha }^{2}}+4\alpha +1}{\left( {{\alpha }^{2}}+\alpha \right)}=\dfrac{9}{2}\]
On cross multiplying, we get:
\[\Rightarrow 2\times \left( 4{{\alpha }^{2}}+4\alpha +1 \right)=9\times \left( {{\alpha }^{2}}+\alpha \right)\]
On multiplying the terms, we get:
\[\Rightarrow 8{{\alpha }^{2}}+8\alpha +2=9{{\alpha }^{2}}+9\alpha \]
On transferring the like terms across the $=$ , we get:
\[\Rightarrow 9{{\alpha }^{2}}-8{{\alpha }^{2}}+9\alpha -8\alpha -2=0\]
On simplifying, we get:
\[\Rightarrow {{\alpha }^{2}}+\alpha -2=0\]
Now the expression can be written in the factorized format as:
\[\Rightarrow \left( \alpha +2 \right)\left( \alpha -1 \right)=0\]
This implies that $\alpha =-2$ or $\alpha =1$.
Now from the list of given options, we have the option for $\alpha =-2$ and not $\alpha =-1$ therefore, the correct option is $\left( D \right)$, which is the required solution.
Note: It is to be remembered that in this question we are solving a definite integral, which has a limit value. There also exists indefinite integrals which do not have any limit to them. The log which we have used in the question is log to the base $e$. This is also written as $\ln $. The other commonly used base is log to the base $10$.
Complete step by step solution:
We have the expression given as:
$\Rightarrow \int\limits_{\alpha }^{\alpha +1}{\dfrac{dx}{\left( x+\alpha \right)\left( x+\alpha +1 \right)}}={{\log }_{e}}\left( \dfrac{9}{8} \right)$
We can see that the expression cannot be integrated directly; we will convert the numerator of the expression in the form of the denominator.
We can write the numerator as:
$\Rightarrow \int\limits_{\alpha }^{\alpha +1}{\dfrac{\left( x+\alpha +1 \right)-\left( x+\alpha \right)dx}{\left( x+\alpha \right)\left( x+\alpha +1 \right)}}={{\log }_{e}}\left( \dfrac{9}{8} \right)$
We can see that by substituting this in the numerator, the value of the numerator does not change.
Now on splitting the term in the numerator, we get:
\[\Rightarrow \int\limits_{\alpha }^{\alpha +1}{\left[ \dfrac{\left( x+\alpha +1 \right)}{\left( x+\alpha \right)\left( x+\alpha +1 \right)}-\dfrac{\left( x+\alpha \right)}{\left( x+\alpha \right)\left( x+\alpha +1 \right)} \right]dx}={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
Now on cancelling the similar terms from the fraction, we get:
\[\Rightarrow \int\limits_{\alpha }^{\alpha +1}{\left[ \dfrac{1}{\left( x+\alpha \right)}-\dfrac{1}{\left( x+\alpha +1 \right)} \right]dx}={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
Now we know that $\int{\dfrac{dx}{\left( x+a \right)}=\log \left( x+a \right)}$ therefore, on using the formula, we get:
\[\Rightarrow \left[ {{\log }_{e}}\left( x+\alpha \right)-{{\log }_{e}}\left( x+\alpha +1 \right) \right]_{\alpha }^{\alpha +1}={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
Now we know the property of logarithm that ${{\log }_{e}}a-{{\log }_{e}}b={{\log }_{e}}\left( \dfrac{a}{b} \right)$ therefore, on using the property, we get:
\[\Rightarrow \left[ {{\log }_{e}}\left( \dfrac{x+\alpha }{x+\alpha +1} \right) \right]_{\alpha }^{\alpha +1}={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
Now on substituting the value of the limits, we get:
\[\Rightarrow \left[ {{\log }_{e}}\left( \dfrac{\left( \alpha +1 \right)+\alpha }{\left( \alpha +1 \right)+\alpha +1} \right) \right]-\left[ {{\log }_{e}}\left( \dfrac{\alpha +\alpha }{\alpha +\alpha +1} \right) \right]={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
On opening the brackets, we get:
\[\Rightarrow \left[ {{\log }_{e}}\left( \dfrac{\alpha +1+\alpha }{\alpha +1+\alpha +1} \right) \right]-\left[ {{\log }_{e}}\left( \dfrac{\alpha +\alpha }{\alpha +\alpha +1} \right) \right]={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
On adding the similar terms, we get:
\[\Rightarrow \left[ {{\log }_{e}}\left( \dfrac{2\alpha +1}{2\alpha +2} \right) \right]-\left[ {{\log }_{e}}\left( \dfrac{2\alpha }{2\alpha +1} \right) \right]={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
Now on applying the property of logarithm ${{\log }_{e}}a-{{\log }_{e}}b={{\log }_{e}}\left( \dfrac{a}{b} \right)$ on the above expression, we get:
\[\Rightarrow {{\log }_{e}}\left( \dfrac{\dfrac{2\alpha +1}{2\alpha +2}}{\dfrac{2\alpha }{2\alpha +1}} \right)={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
On simplifying the fraction, we get:
\[\Rightarrow {{\log }_{e}}\left( \dfrac{2\alpha +1}{2\alpha +2}\times \dfrac{2\alpha +1}{2\alpha } \right)={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
On simplifying terms by multiplying, we get:
\[\Rightarrow {{\log }_{e}}\left( \dfrac{{{\left( 2\alpha +1 \right)}^{2}}}{2\alpha \left( 2\alpha +2 \right)} \right)={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
on using the expansion formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ on the numerator, we get:
\[\Rightarrow {{\log }_{e}}\left( \dfrac{4{{\alpha }^{2}}+4\alpha +1}{2\alpha \left( 2\alpha +2 \right)} \right)={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
On multiplying the terms in the denominator, we get:
\[\Rightarrow {{\log }_{e}}\left( \dfrac{4{{\alpha }^{2}}+4\alpha +1}{4{{\alpha }^{2}}+4\alpha } \right)={{\log }_{e}}\left( \dfrac{9}{8} \right)\]
Now since logarithm is present on both the sides, we can remove it and write the terms as:
\[\Rightarrow \dfrac{4{{\alpha }^{2}}+4\alpha +1}{4{{\alpha }^{2}}+4\alpha }=\dfrac{9}{8}\]
On taking $4$ common from the denominator, we get:
\[\Rightarrow \dfrac{4{{\alpha }^{2}}+4\alpha +1}{4\left( {{\alpha }^{2}}+\alpha \right)}=\dfrac{9}{8}\]
On simplifying, we get:
\[\Rightarrow \dfrac{4{{\alpha }^{2}}+4\alpha +1}{\left( {{\alpha }^{2}}+\alpha \right)}=\dfrac{9}{2}\]
On cross multiplying, we get:
\[\Rightarrow 2\times \left( 4{{\alpha }^{2}}+4\alpha +1 \right)=9\times \left( {{\alpha }^{2}}+\alpha \right)\]
On multiplying the terms, we get:
\[\Rightarrow 8{{\alpha }^{2}}+8\alpha +2=9{{\alpha }^{2}}+9\alpha \]
On transferring the like terms across the $=$ , we get:
\[\Rightarrow 9{{\alpha }^{2}}-8{{\alpha }^{2}}+9\alpha -8\alpha -2=0\]
On simplifying, we get:
\[\Rightarrow {{\alpha }^{2}}+\alpha -2=0\]
Now the expression can be written in the factorized format as:
\[\Rightarrow \left( \alpha +2 \right)\left( \alpha -1 \right)=0\]
This implies that $\alpha =-2$ or $\alpha =1$.
Now from the list of given options, we have the option for $\alpha =-2$ and not $\alpha =-1$ therefore, the correct option is $\left( D \right)$, which is the required solution.
Note: It is to be remembered that in this question we are solving a definite integral, which has a limit value. There also exists indefinite integrals which do not have any limit to them. The log which we have used in the question is log to the base $e$. This is also written as $\ln $. The other commonly used base is log to the base $10$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

