Answer
Verified
430.8k+ views
Hint: Let us assume that the earning of trust from all the charges is x and earning of trust from the interest obtained from the bank is y. It is given that the total earning of trust is Rs. 1800. So we get equation as: $x+y=1800$
Also, it is said that the trust receives Rs 30000 every month out of which it spends half on medical & educational care of the children, i.e. Rs 15000 and deposits rest to the bank. It also charges 2% of this amount to the bank. So, the earning of trust from these charges is: 2% of Rs. 15000, i.e. Rs. 300. So, we have another equation: $x=300$
So, for a system of linear equations in two variables:
$\begin{align}
& ax+by=p \\
& cx+dy=q \\
\end{align}$
We can solve by using matrix method as:
$\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right]$
Solve the matrix for the given equations to get the value of y. Now, assume that the interest rate is r%. So, by using the formula: $\text{interest}=rate\times amount$ , where y is the interest and Rs. 15000 is the amount, get the value of interest rate.
Complete step by step answer:
As we have a system of linear equations in two variables:
$\begin{align}
& x+y=1800......(1) \\
& x=300......(2) \\
\end{align}$
So, by using matrix method, we can write:
$\left[ \begin{matrix}
1 & 1 \\
1 & 0 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{matrix}
1800 \\
300 \\
\end{matrix} \right]......(3)$
Now, by separating the variables on one side, we can write:
\[\Rightarrow \left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]={{\left[ \begin{matrix}
1 & 1 \\
1 & 0 \\
\end{matrix} \right]}^{-1}}\left[ \begin{matrix}
1800 \\
300 \\
\end{matrix} \right]......(4)\]
For a matrix: $A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ , we have \[{{A}^{-1}}=\dfrac{adjA}{\left| A \right|}\], where $adjA={{\left[ {{C}_{i}}_{j} \right]}^{T}}$ and ${{C}_{i}}_{j}={{\left( -1 \right)}^{i+j}}{{M}_{i}}_{j}$
So, for matrix: $A=\left[ \begin{matrix}
1 & 1 \\
1 & 0 \\
\end{matrix} \right]$
$\begin{align}
& \left| A \right|=-1 \\
& {{M}_{i}}_{j}=\left[ \begin{matrix}
0 & 1 \\
1 & 1 \\
\end{matrix} \right] \\
& {{C}_{i}}_{j}={{\left( -1 \right)}^{i+j}}\left[ \begin{matrix}
0 & 1 \\
1 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0 & -1 \\
-1 & 1 \\
\end{matrix} \right] \\
& adjA={{\left[ \begin{matrix}
0 & -1 \\
-1 & 1 \\
\end{matrix} \right]}^{T}} \\
& =\left[ \begin{matrix}
0 & -1 \\
-1 & 1 \\
\end{matrix} \right]
\end{align}$
Therefore,
\[\begin{align}
& {{A}^{-1}}=\dfrac{1}{-1}\left[ \begin{matrix}
0 & -1 \\
-1 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0 & 1 \\
1 & -1 \\
\end{matrix} \right]
\end{align}\]
So, we can write equation (4) as:
\[\Rightarrow \left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{matrix}
0 & 1 \\
1 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
1800 \\
300 \\
\end{matrix} \right]......(5)\]
Now, solve the matrix, to get the value of y:
\[\begin{align}
& \Rightarrow \left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{matrix}
\left( 0\times 1800 \right)+\left( 1\times 300 \right) \\
\left( 1\times 1800 \right)+\left( -1\times 300 \right) \\
\end{matrix} \right] \\
& \Rightarrow \left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{matrix}
300 \\
1500 \\
\end{matrix} \right] \\
\end{align}\]
Therefore, y = Rs. 1500
Now, by using the formula: $\text{interest}=rate\times amount$, we get the interest rate r as:
$\begin{align}
& \Rightarrow 1500=\dfrac{r}{100}\times 15000 \\
& \Rightarrow r=10\% \\
\end{align}$
Hence, the interest rate is 10%
Note: There is an alternate method for solving the inverse of a matrix, i.e.
For a matrix: $A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ , we have \[{{A}^{-1}}=\dfrac{1}{ad-bc}\left[ \begin{matrix}
d & -c \\
-b & a \\
\end{matrix} \right]\]
So, we can write equation (4) as:
\[\begin{align}
& \Rightarrow \left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\dfrac{1}{\left( 1\times 0 \right)-\left( 1\times 1 \right)}\left[ \begin{matrix}
0 & -1 \\
-1 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1800 \\
300 \\
\end{matrix} \right] \\
& \Rightarrow \left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\dfrac{1}{-1}\left[ \begin{matrix}
0 & -1 \\
-1 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1800 \\
300 \\
\end{matrix} \right] \\
& \Rightarrow \left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{matrix}
0 & 1 \\
1 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
1800 \\
300 \\
\end{matrix} \right] \\
\end{align}\]
Also, it is said that the trust receives Rs 30000 every month out of which it spends half on medical & educational care of the children, i.e. Rs 15000 and deposits rest to the bank. It also charges 2% of this amount to the bank. So, the earning of trust from these charges is: 2% of Rs. 15000, i.e. Rs. 300. So, we have another equation: $x=300$
So, for a system of linear equations in two variables:
$\begin{align}
& ax+by=p \\
& cx+dy=q \\
\end{align}$
We can solve by using matrix method as:
$\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right]$
Solve the matrix for the given equations to get the value of y. Now, assume that the interest rate is r%. So, by using the formula: $\text{interest}=rate\times amount$ , where y is the interest and Rs. 15000 is the amount, get the value of interest rate.
Complete step by step answer:
As we have a system of linear equations in two variables:
$\begin{align}
& x+y=1800......(1) \\
& x=300......(2) \\
\end{align}$
So, by using matrix method, we can write:
$\left[ \begin{matrix}
1 & 1 \\
1 & 0 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{matrix}
1800 \\
300 \\
\end{matrix} \right]......(3)$
Now, by separating the variables on one side, we can write:
\[\Rightarrow \left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]={{\left[ \begin{matrix}
1 & 1 \\
1 & 0 \\
\end{matrix} \right]}^{-1}}\left[ \begin{matrix}
1800 \\
300 \\
\end{matrix} \right]......(4)\]
For a matrix: $A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ , we have \[{{A}^{-1}}=\dfrac{adjA}{\left| A \right|}\], where $adjA={{\left[ {{C}_{i}}_{j} \right]}^{T}}$ and ${{C}_{i}}_{j}={{\left( -1 \right)}^{i+j}}{{M}_{i}}_{j}$
So, for matrix: $A=\left[ \begin{matrix}
1 & 1 \\
1 & 0 \\
\end{matrix} \right]$
$\begin{align}
& \left| A \right|=-1 \\
& {{M}_{i}}_{j}=\left[ \begin{matrix}
0 & 1 \\
1 & 1 \\
\end{matrix} \right] \\
& {{C}_{i}}_{j}={{\left( -1 \right)}^{i+j}}\left[ \begin{matrix}
0 & 1 \\
1 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0 & -1 \\
-1 & 1 \\
\end{matrix} \right] \\
& adjA={{\left[ \begin{matrix}
0 & -1 \\
-1 & 1 \\
\end{matrix} \right]}^{T}} \\
& =\left[ \begin{matrix}
0 & -1 \\
-1 & 1 \\
\end{matrix} \right]
\end{align}$
Therefore,
\[\begin{align}
& {{A}^{-1}}=\dfrac{1}{-1}\left[ \begin{matrix}
0 & -1 \\
-1 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0 & 1 \\
1 & -1 \\
\end{matrix} \right]
\end{align}\]
So, we can write equation (4) as:
\[\Rightarrow \left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{matrix}
0 & 1 \\
1 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
1800 \\
300 \\
\end{matrix} \right]......(5)\]
Now, solve the matrix, to get the value of y:
\[\begin{align}
& \Rightarrow \left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{matrix}
\left( 0\times 1800 \right)+\left( 1\times 300 \right) \\
\left( 1\times 1800 \right)+\left( -1\times 300 \right) \\
\end{matrix} \right] \\
& \Rightarrow \left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{matrix}
300 \\
1500 \\
\end{matrix} \right] \\
\end{align}\]
Therefore, y = Rs. 1500
Now, by using the formula: $\text{interest}=rate\times amount$, we get the interest rate r as:
$\begin{align}
& \Rightarrow 1500=\dfrac{r}{100}\times 15000 \\
& \Rightarrow r=10\% \\
\end{align}$
Hence, the interest rate is 10%
Note: There is an alternate method for solving the inverse of a matrix, i.e.
For a matrix: $A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ , we have \[{{A}^{-1}}=\dfrac{1}{ad-bc}\left[ \begin{matrix}
d & -c \\
-b & a \\
\end{matrix} \right]\]
So, we can write equation (4) as:
\[\begin{align}
& \Rightarrow \left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\dfrac{1}{\left( 1\times 0 \right)-\left( 1\times 1 \right)}\left[ \begin{matrix}
0 & -1 \\
-1 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1800 \\
300 \\
\end{matrix} \right] \\
& \Rightarrow \left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\dfrac{1}{-1}\left[ \begin{matrix}
0 & -1 \\
-1 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1800 \\
300 \\
\end{matrix} \right] \\
& \Rightarrow \left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{matrix}
0 & 1 \\
1 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
1800 \\
300 \\
\end{matrix} \right] \\
\end{align}\]
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE