
A triangle ABC has vertices A, B and C and its respective opposite sides have lengths a, b and c. This triangle ABC is inscribed in a circle of radius R. If b=c=1 and the altitude from A to side BC has length $\sqrt {\dfrac{2}{3}} $, then what is the value of R.
(A) $\sqrt 3 $
(B) $\dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$
(C) $\sqrt {\dfrac{1}{2}} $
(D) $\sqrt {\dfrac{1}{3}} $
Answer
577.8k+ views
Hint:Here it is given that b=c=1. This means it’s an isosceles triangle and height of the altitude is given from these we can find the area of the triangle $\Delta = \dfrac{1}{2} \times b \times h$ and find the value of a. As the triangle is inscribed in the circle so we apply the formula of circumradius $R = \dfrac{{a \times b \times c}}{{4 \times \Delta }}$ by solving this we get the value of R.
Complete step-by-step answer:
In fig AB=b, AC=c, BC=a , AD=$\sqrt {\dfrac{2}{3}} $
According to the question it is given that
b = c = 1,
So, the nature of the triangle is isosceles.
The length of the altitude AD = C,
Radius of the circle = R
Now we find the area of triangle ABC where BC is the base and AD is the height of the triangle
$\Delta = \dfrac{1}{2} \times b \times h$
$\Delta = \dfrac{1}{2} \times BC \times AD$
Now put the values BC=a , AD=$\sqrt {\dfrac{2}{3}} $, we get,
$\Delta = \dfrac{1}{2} \times a \times \sqrt {\dfrac{2}{3}} $
By solving we get value of a,
\[a = 2 \times \Delta \times \sqrt {\dfrac{3}{2}} \]
Now we find the circumradius of the circle in which triangle is inscribed
$R = \dfrac{{a \times b \times c}}{{4 \times \Delta }}$ where $\Delta$ is the area of the triangle.
We put the values of \[a = 2 \times \Delta \times \sqrt {\dfrac{3}{2}} \],b=c=1 in the formula we get,
$ \Rightarrow R = \dfrac{{(\dfrac{{2\Delta \sqrt 3 }}{{\sqrt 2 }}) \times 1 \times 1}}{{4 \times \Delta }}$
Now $\sqrt 2 $ comes in the denominator,
$ \Rightarrow R = \dfrac{{2 \times \Delta \times \sqrt 3 }}{{4 \times \sqrt 2 \times \Delta }}$
Now, We cancel out the similar terms
$ \Rightarrow R = \dfrac{{\sqrt 2 \times \sqrt 2 \times \Delta \times \sqrt 3 }}{{2 \times 2 \times \sqrt 2 \times \Delta }}$
We get,
$ \Rightarrow R = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$
So, the circumradius of the circle$R = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$.
So, the correct answer is “Option B”.
Note:The radius of circle circumscribed around a triangle is known as circumradius.Triangle inscribed in a circle means that there is a triangle which is drawn inside the circle. If it is a right angled triangle drawn inside a circle so its hypotenuse is the diameter of the circle.Students should remember formulas of area of triangle and circumradius for solving these types of questions.
Complete step-by-step answer:
In fig AB=b, AC=c, BC=a , AD=$\sqrt {\dfrac{2}{3}} $
According to the question it is given that
b = c = 1,
So, the nature of the triangle is isosceles.
The length of the altitude AD = C,
Radius of the circle = R
Now we find the area of triangle ABC where BC is the base and AD is the height of the triangle
$\Delta = \dfrac{1}{2} \times b \times h$
$\Delta = \dfrac{1}{2} \times BC \times AD$
Now put the values BC=a , AD=$\sqrt {\dfrac{2}{3}} $, we get,
$\Delta = \dfrac{1}{2} \times a \times \sqrt {\dfrac{2}{3}} $
By solving we get value of a,
\[a = 2 \times \Delta \times \sqrt {\dfrac{3}{2}} \]
Now we find the circumradius of the circle in which triangle is inscribed
$R = \dfrac{{a \times b \times c}}{{4 \times \Delta }}$ where $\Delta$ is the area of the triangle.
We put the values of \[a = 2 \times \Delta \times \sqrt {\dfrac{3}{2}} \],b=c=1 in the formula we get,
$ \Rightarrow R = \dfrac{{(\dfrac{{2\Delta \sqrt 3 }}{{\sqrt 2 }}) \times 1 \times 1}}{{4 \times \Delta }}$
Now $\sqrt 2 $ comes in the denominator,
$ \Rightarrow R = \dfrac{{2 \times \Delta \times \sqrt 3 }}{{4 \times \sqrt 2 \times \Delta }}$
Now, We cancel out the similar terms
$ \Rightarrow R = \dfrac{{\sqrt 2 \times \sqrt 2 \times \Delta \times \sqrt 3 }}{{2 \times 2 \times \sqrt 2 \times \Delta }}$
We get,
$ \Rightarrow R = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$
So, the circumradius of the circle$R = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$.
So, the correct answer is “Option B”.
Note:The radius of circle circumscribed around a triangle is known as circumradius.Triangle inscribed in a circle means that there is a triangle which is drawn inside the circle. If it is a right angled triangle drawn inside a circle so its hypotenuse is the diameter of the circle.Students should remember formulas of area of triangle and circumradius for solving these types of questions.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

